skip to main content


Title: Bilayer metal etch mask strategy for deep diamond etching

In this study, we demonstrate a tolerant and durable Cr/Ni bilayer metal etch mask that allows us to realize approximately 150:1 etch selectivity to diamond. This result is achieved through the use of a very thin initial Cr layer of <10 nm thickness as part of the bilayer metal mask, which results in five to ten times improved selectivity than thick single metal layer masks or bilayer masks with thicker combinations. A finite element analysis was employed to design and understand the physics and working mechanism of the bilayer metal masks with different thicknesses. Raman spectroscopy and energy-dispersive x-ray spectroscopy on the diamond surface were also performed to investigate the changes in diamond quality before and after the deep diamond etching and found that no noticeable etch damage or defects were formed. Overall, this mask strategy offers a viable way to realize deep diamond etching using a high heat and chemistry tolerant and durable bilayer metal etching mask. It also offers several technological benefits and advantages, including various deposition method options, such as sputtering and physical vapor deposition, that can be used and the total thinness of the bilayer metal mask required given the higher selectivity allows us to realize fine diamond etching or high-aspect ratio etching, which is a critical fabrication process for future power, RF, MEMS, and quantum device applications.

 
more » « less
Award ID(s):
1809077
NSF-PAR ID:
10363924
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
American Vacuum Society
Date Published:
Journal Name:
Journal of Vacuum Science & Technology B
Volume:
40
Issue:
2
ISSN:
2166-2746
Page Range / eLocation ID:
Article No. 022210
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Diamond offers good optical properties and hosts bright color centers with long spin coherence times. Recent advances in angled-etching of diamond, specifically with reactive ion beam angled etching (RIBAE), have led to successful demonstration of quantum photonic devices operating at visible wavelengths. However, larger devices operating at telecommunication wavelengths have been difficult to fabricate due to the increased mask erosion, arising from the increased size of devices requiring longer etch times. We evaluated different mask materials for RIBAE of diamond photonic crystal nanobeams and waveguides, and how their thickness, selectivity, aspect ratio and sidewall smoothness affected the resultant etch profiles and optical performance. We found that a thick hydrogen silesquioxane (HSQ) layer on a thin alumina adhesion layer provided the best etch profile and optical performance. The techniques explored in this work can also be adapted to other bulk materials that are not available heteroepitaxially or as thin films-on-insulator. 
    more » « less
  2. The epitaxial growth of SrTiO 3 on Si(100) substrates that have been lithographically patterned to realize deposition-last, lithographically defined oxide devices on Si is explored. In contrast to traditional deposition-last techniques which create a physical hard mask on top of the substrate prior to epitaxial growth, a pseudomask is instead created by texturing the Si substrate surface itself. The Si is textured through a combination of reactive ion etching and wet-etching using a tetramethylammonium hydroxide solution. Desorbing the native SiO x at high temperatures prior to epitaxial growth in ultrahigh vacuum presents no complications as the patterned substrate is comprised entirely of Si. The inverted profile in which the epitaxial oxide device layer is above the textured pseudomask circumvents shadowing during deposition associated with conventional hard masks, thereby opening a pathway for highly scaled devices to be created. 
    more » « less
  3. For continual scaling in microelectronics, new processes for precise high volume fabrication are required. Area-selective atomic layer deposition (ASALD) can provide an avenue for self-aligned material patterning and offers an approach to correct edge placement errors commonly found in top-down patterning processes. Two-dimensional transition metal dichalcogenides also offer great potential in scaled microelectronic devices due to their high mobilities and few-atom thickness. In this work, we report ASALD of MoS2 thin films by deposition with MoF6 and H2S precursor reactants. The inherent selectivity of the MoS2 atomic layer deposition (ALD) process is demonstrated by growth on common dielectric materials in contrast to thermal oxide/ nitride substrates. The selective deposition produced few layer MoS2 films on patterned growth regions as measured by Raman spectroscopy and time-of-flight secondary ion mass spectrometry. We additionally demonstrate that the selectivity can be enhanced by implementing atomic layer etching (ALE) steps at regular intervals during MoS2 growth. This area-selective ALD process provides an approach for integrating 2D films into next-generation devices by leveraging the inherent differences in surface chemistries and providing insight into the effectiveness of a supercycle ALD and ALE process. 
    more » « less
  4. Ultra-violet light emitting diodes (UV-LEDs) and lasers based on the III-Nitride material system are very promising since they enable compact, safe, and efficient solid-state sources of UV light for a range of applications. The primary challenges for UV LEDs are related to the poor conductivity of p-AlGaN layers and the low light extraction efficiency of LED structures. Tunnel junction-based UV LEDs provide a distinct and unique pathway to eliminate several challenges associated with UV LEDs1-4. In this work, we present for the first time, a reversed-polarization (p-down) AlGaN based UV-LED utilizing bottom tunnel junction (BTJ) design. We show that compositional grading enables us to achieve the lowest reported voltage drop of 1.1 V at 20 A/cm2 among transparent AlGaN based tunnel junctions at this Al-composition. Compared to conventional LED design, a p-down structure offers lower voltage drop because the depletion barrier for both holes and electrons is lower due to polarization fields aligning with the depletion field. Furthermore, the bottom tunnel junction also allows us to use polarization grading to realize better p- and n-type doping to improve tunneling transport. The epitaxial structure of the UV-LED was grown by plasma-assisted molecular beam epitaxy (PAMBE) on metal-organic chemical vapor deposition (MOCVD)-grown n-type Al0.3Ga0.7N templates. The transparent TJ was grown using graded n++-Al0.3Ga0.7N→ n++-Al0.4Ga0.6N (Si=3×1020 cm-3) and graded p++-Al0.4Ga0.6N →p++-Al0.3Ga0.7N (Mg=1×1020 cm-3) to take advantage of induced 3D polarization charges. The high number of charges at the tunnel junction region leads to lower depletion width and efficient hole injection to the p-type layer. The UV LED active region consists of three 2.5 nm Al0.2Ga0.8N quantum wells and 7 nm Al0.3Ga0.6N quantum barriers followed by 12 nm of p- Al0.46Ga0.64N electron blocking layer (EBL). The active region was grown on top of the tunnel junction. A similar LED with p-up configuration was also grown to compare the electrical performance. The surface morphology examined by atomic force microscopy (AFM) shows smooth growth features with a surface roughness of 1.9 nm. The dendritic features on the surface are characteristic of high Si doping on the surface. The composition of each layer was extracted from the scan by high resolution x-ray diffraction (HR-XRD). The electrical characteristics of a device show a voltage drop of 4.9 V at 20 A/cm2, which corresponds to a tunnel junction voltage drop of ~ 1.1 V. This is the best lowest voltage for transparent 30% AlGaN tunnel junctions to-date and is comparable with the lowest voltage drop reported previously on non-transparent (InGaN-based) tunnel junctions at similar Al mole fraction AlGaN. On-wafer electroluminescence measurements on patterned light-emitting diodes showed single peak emission wavelength of 325 nm at 100 A/cm2 which corresponds to Al0.2Ga0.8N, confirming that efficient hole injection was achieved within the structure. The device exhibits a wavelength shift from 330 nm to 325 nm with increasing current densities from 10A/cm2 to 100A/cm2. In summary, we have demonstrated a fully transparent bottom AlGaN homojunction tunnel junction that enables p-down reversed polarization ultraviolet light emitting diodes, and has very low voltage drop at the tunnel junction. This work could enable new flexibility in the design of future III-Nitride ultraviolet LEDs and lasers. 
    more » « less
  5. Nanoscale light emitting diodes (nanoLEDs, diameter < 1 µm), with active and sacrificial multi-quantum well (MQW) layers epitaxially grown via metal organic chemical vapor deposition, were fabricated and released into solution using a combination of colloidal lithography and photoelectrochemical (PEC) etching of the sacrificial MQW layer. PEC etch conditions were optimized to minimize undercut roughness, and thus limit damage to the active MQW layer. NanoLED emission was blue-shifted ∼10 nm from as-grown (unpatterned) LED material, hinting at strain relaxation in the active InGaN MQW layer. X-ray diffraction also suggests that strain relaxation occurs upon nanopatterning, which likely results in less quantum confined Stark effect. Internal quantum efficiency of the lifted nanoLEDs was estimated at 29% by comparing photoluminescence at 292K and 14K. This work suggests that colloidal lithography, combined with chemical release, could be a viable route to produce solution-processable, high efficiency nanoscale light emitters.

     
    more » « less