Neutron star properties depend on both nuclear physics and astrophysical processes, and thus observations of neutron stars offer constraints on both large-scale astrophysics and the behavior of cold, dense matter. In this study, we use astronomical data to jointly infer the universal equation of state of dense matter along with two distinct astrophysical populations: Galactic neutron stars observed electromagnetically and merging neutron stars in binaries observed with gravitational waves. We place constraints on neutron star properties and quantify the extent to which they are attributable to macrophysics or microphysics. We confirm previous results indicating that the Galactic and merging neutron stars have distinct mass distributions. The inferred maximum mass of both Galactic neutron stars, πpop,EM=2.0β’5+0.11β0.06β’πβ (median and 90% symmetric credible interval), and merging neutron star binaries, πpop,GW =1.8β’5+0.39β0.16β’πβ, are consistent with the maximum mass of nonrotating neutron stars set by nuclear physics, πTOV =2.2β’8+0.41β0.21β’πβ. The radius of a 1.4β’πβ neutron star is 12.2+0.8β0.9ββkm, consistent with, though βΌ20% tighter than, previous results using an identical equation of state model. Even though observed Galactic and merging neutron stars originate from populations with distinct properties, there is currently no evidence that astrophysical processes cannot produce neutron stars up to the maximum value imposed by nuclear physics.
more »
« less
Hyperonization in Compact Stars
We review the covariant density functional approach to the equation of state of the dense nuclear matter in compact stars. The main emphasis is on the hyperonization of the dense matter, and the role played by the Delta-resonance. The implications of hyperonization for the astrophysics of compact stars, including the equation of state, composition, and stellar parameters are examined. The mass-radius relation and tidal deformabilities of static and rapidly rotating (Keplerian) configurations are discussed in detail. We briefly touch upon some other recent developments involving hyperonization in hot hypernuclear matter at high- and low-densities.
more »
« less
- PAR ID:
- 10280163
- Editor(s):
- Vasconcellos, C; and Weber, F.
- Date Published:
- Journal Name:
- World Scientific series in astrophysics
- ISSN:
- 2529-7511
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate the influence of repulsive vector interactions and color superconductivity on the structure of neutron stars using an extended version of the field correlator method (FCM) for the description of quark matter. The hybrid equation of state is constructed using the Maxwell description, which assumes a sharp hadron-quark phase transition. The equation of state of hadronic matter is computed for a density-dependent relativistic lagrangian treated in the mean-field approximation, with parameters given by the SW4L nuclear model. This model described the interactions among baryons in terms of Ο, Ο, Ο, Ο*, and Ο mesons. Quark matter is assumed to be in either the CFL or the 2SC+s color superconducting phase. The possibility of sequential (hadron-quark, quark-quark) transitions in ultra-dense matter is investigated. Observed data related to massive pulsars, gravitational-wave events, and NICER are used to constrain the parameters of the extended FCM model. The successful equations of state are used to explore the mass-radius relationship, radii, and tidal deformabilities of hybrid stars. A special focus lies on investigating consequences that slow or fast conversions of quark-hadron matter have on the stability and the mass-radius relationship of hybrid stars. We find that if slow conversion should occur, a new branch of stable massive stars would exist whose members have radii that are up to 1.5 km smaller than those of conventional neutron stars of the same mass. Such objects could be possible candidates for the stellar high-mass object of the GW190425 binary system.more » « less
-
Recent experimental and ab initio theory investigations of the 208Pb neutron skin thickness have the potential to inform the neutron star equation of state. In particular, the strong correlation between the 208Pb neutron skin thickness and the pressure of neutron matter at normal nuclear densities leads to modified predictions for the radii, tidal deformabilities, and moments of inertia of typical 1.4Mβ neutron stars. In the present work, we study the relative impact of these recent analyses of the 208Pb neutron skin thickness on bulk properties of neutron stars within a Bayesian statistical analysis. Two models for the equation of state prior are employed in order to highlight the role of the highly uncertain high-density equation of state. From our combined Bayesian analysis of nuclear theory, nuclear experiment, and observational constraints on the dense matter equation of state, we find at the 90% credibility level R1.4=12.36β0.73+0.38 km for the radius of a 1.4Mβ neutron star, R2.0=11.96β0.71+0.94 km for the radius of a 2.0Mβ neutron star, Ξ1.4=440β144+103 for the tidal deformability of a 1.4Mβ neutron star, and I1.338=1.425β0.146+0.074Γ1045gcm2 for the moment of inertia of PSR J0737-3039A whose mass is 1.338Mβ.more » « less
-
Abstract Gravitational-wave observations of binary neutron star mergers provide valuable information about neutron star structure and the equation of state of dense nuclear matter. Numerous methods have been proposed to analyze the population of observed neutron stars, and previous work has demonstrated the necessity of jointly fitting the astrophysical distribution and the equation of state in order to accurately constrain the equation of state. In this work, we introduce a new framework to simultaneously infer the distribution of binary neutron star masses and the nuclear equation of state using Gaussian mixture model density estimates, which mitigates some of the limitations previously used methods suffer from. Using our method, we reproduce previous projections for the expected precision of our joint mass distribution and equation-of-state inference with tens of observations. We also show that mismodeling the equation of state can bias our inference of the neutron star mass distribution. While we focus on neutron star masses and matter effects, our method is widely applicable to population inference problems.more » « less
-
Born in the aftermath of core-collapse supernovae, neutron stars contain matter under extraordinary conditions of density and temperature that are difficult to reproduce in the laboratory. In recent years, neutron star observations have begun to yield novel insights into the nature of strongly interacting matter in the high-density regime where current theoretical models are challenged. At the same time, chiral effective field theory has developed into a powerful framework to study nuclear matter properties with quantified uncertainties in the moderate-density regime for modeling neutron stars. In this article, we review recent developments in chiral effective field theory and focus on many-body perturbation theory as a computationally efficient tool for calculating the properties of hot and dense nuclear matter. We also demonstrate how effective field theory enables statistically meaningful comparisons among nuclear theory predictions, nuclear experiments, and observational constraints on the nuclear equation of state.more » « less
An official website of the United States government

