skip to main content


Title: Synthesis and chemical stability of technetium nitrides
We demonstrate the synthesis and phase stability of TcN, Tc 2 N, and a substoichiometric TcN x from 0 to 50 GPa and to 2500 K in a laser-heated diamond anvil cell. At least potential recoverability is demonstrated for each compound. TcN adopts a previously unpredicted structure identified via crystal structure prediction.  more » « less
Award ID(s):
1904694
NSF-PAR ID:
10280168
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Communications
ISSN:
1359-7345
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We are developing a system for long term Semi-Automated Rehabilitation At the Home (SARAH) that relies on low-cost and unobtrusive video-based sensing. We present a cyber-human methodology used by the SARAH system for automated assessment of upper extremity stroke rehabilitation at the home. We propose a hierarchical model for automatically segmenting stroke survivor's movements and generating training task performance assessment scores during rehabilitation. The hierarchical model fuses expert therapist knowledge-based approaches with data-driven techniques. The expert knowledge is more observable in the higher layers of the hierarchy (task and segment) and therefore more accessible to algorithms incorporating high level constraints relating to activity structure (i.e., type and order of segments per task). We utilize an HMM and a Decision Tree model to connect these high level priors to data driven analysis. The lower layers (RGB images and raw kinematics) need to be addressed primarily through data driven techniques. We use a transformer based architecture operating on low-level action features (tracking of individual body joints and objects) and a Multi-Stage Temporal Convolutional Network(MS-TCN) operating on raw RGB images. We develop a sequence combining these complimentary algorithms effectively, thus encoding the information from different layers of the movement hierarchy. Through this combination, we produce a robust segmentation and task assessment results on noisy, variable and limited data, which is characteristic of low cost video capture of rehabilitation at the home. Our proposed approach achieves 85% accuracy in per-frame labeling, 99% accuracy in segment classification and 93% accuracy in task completion assessment. Although the methodology proposed in this paper applies to upper extremity rehabilitation using the SARAH system, it can potentially be used, with minor alterations, to assist automation in many other movement rehabilitation contexts (i.e., lower extremity training for neurological accidents). 
    more » « less
  2. This paper considers the problem of tracking and predicting dynamical processes with model switching. The classical approach to this problem has been to use an interacting multiple model (IMM) which uses multiple Kalman filters and an auxiliary system to estimate the posterior probability of each model given the observations. More recently, data-driven approaches such as recurrent neural networks (RNNs) have been used for tracking and prediction in a variety of settings. An advantage of data-driven approaches like the RNN is that they can be trained to provide good performance even when the underlying dynamic models are unknown. This paper studies the use of temporal convolutional networks (TCNs) in this setting since TCNs are also data-driven but have certain structural advantages over RNNs. Numerical simulations demonstrate that a TCN matches or exceeds the performance of an IMM and other classical tracking methods in two specific settings with model switching: (i) a Gilbert-Elliott burst noise communication channel that switches between two different modes, each modeled as a linear system, and (ii) a maneuvering target tracking scenario where the target switches between a linear constant velocity mode and a nonlinear coordinated turn mode. In particular, the results show that the TCN tends to identify a mode switch as fast or faster than an IMM and that, in some cases, the TCN can perform almost as well as an omniscient Kalman filter with perfect knowledge of the current mode of the dynamical system. 
    more » « less
  3. Anomaly detection in time-series data is an integral part in the context of the Internet of Things (IoT). In particular, with the advent of sophisticated deep and machine learning-based techniques, this line of research has attracted many researchers to develop more accurate anomaly detection algorithms. The problem itself has been a long-lasting challenging problem in security and especially in malware detection and data tampering. The advancement of the IoT paradigm as well as the increasing number of cyber attacks on the networks of the Internet of Things worldwide raises the concern of whether flexible and simple yet accurate anomaly detection techniques exist. In this paper, we investigate the performance of deep learning-based models including recurrent neural network-based Bidirectional LSTM (BI-LSTM), Long Short-Term Memory (LSTM), CNN-based Temporal Convolutional (TCN), and CuDNN-LSTM, which is a fast LSTM implementation supported by CuDNN. In particular, we assess the performance of these models with respect to accuracy and the training time needed to build such models. According to our experiment, using different timestamps (i.e., 15, 20, and 30 min), we observe that in terms of performance, the CuDNN-LSTM model outperforms other models, whereas in terms of training time, the TCN-based model is trained faster. We report the results of experiments in comparing these four models with various look-back values. 
    more » « less
  4. Opioid use disorder is a medical condition with major social and economic consequences. While ubiquitous physiological sensing technologies have been widely adopted and extensively used to monitor day-to-day activities and deliver targeted interventions to improve human health, the use of these technologies to detect drug use in natural environments has been largely underexplored. The long-term goal of our work is to develop a mobile technology system that can identify high-risk opioid-related events (i.e., development of tolerance in the setting of prescription opioid use, return-to-use events in the setting of opioid use disorder) and deploy just-in-time interventions to mitigate the risk of overdose morbidity and mortality. In the current paper, we take an initial step by asking a crucial question: Can opioid use be detected using physiological signals obtained from a wrist-mounted sensor? Thirty-six individuals who were admitted to the hospital for an acute painful condition and received opioid analgesics as part of their clinical care were enrolled. Subjects wore a noninvasive wrist sensor during this time (1-14 days) that continuously measured physiological signals (heart rate, skin temperature, accelerometry, electrodermal activity, and interbeat interval). We collected a total of 2070 hours (≈ 86 days) of physiological data and observed a total of 339 opioid administrations. Our results are encouraging and show that using a Channel-Temporal Attention TCN (CTA-TCN) model, we can detect an opioid administration in a time-window with an F1-score of 0.80, a specificity of 0.77, sensitivity of 0.80, and an AUC of 0.77. We also predict the exact moment of administration in this time-window with a normalized mean absolute error of 8.6% and R2 coefficient of 0.85. 
    more » « less
  5. Abstract The quantification of rates for the competing forces of tectonic uplift and erosion has important implications for understanding topographic evolution. Here, we quantify the complex interplay between tectonic uplift, topographic development, and erosion recorded in the hanging walls of several active reverse faults in the Ventura basin, southern California, USA. We use cosmogenic 26Al/10Be isochron burial dating and 10Be surface exposure dating to construct a basin-wide geochronology, which includes burial dating of the Saugus Formation: an important, but poorly dated, regional Quaternary strain marker. Our ages for the top of the exposed Saugus Formation range from 0.36 +0.18/-0.22 Ma to 1.06 +0.23/-0.26 Ma, and our burial ages near the base of shallow marine deposits, which underlie the Saugus Formation, increase eastward from 0.60 +0.05/-0.06 Ma to 3.30 +0.30/-0.41 Ma. Our geochronology is used to calculate rapid long-term reverse fault slip rates of 8.6–12.6 mm yr–1 since ca. 1.0 Ma for the San Cayetano fault and 1.3–3.0 mm yr–1 since ca. 1.0 Ma for the Oak Ridge fault, which are both broadly consistent with contemporary reverse slip rates derived from mechanical models driven by global positioning system (GPS) data. We also calculate terrestrial cosmogenic nuclide (TCN)-derived, catchment-averaged erosion rates that range from 0.05–1.14 mm yr–1 and discuss the applicability of TCN-derived, catchment-averaged erosion rates in rapidly uplifting, landslide-prone landscapes. We compare patterns in erosion rates and tectonic rates to fluvial response times and geomorphic landscape parameters to show that in young, rapidly uplifting mountain belts, catchments may attain a quasi-steady-state on timescales of <105 years even if catchment-averaged erosion rates are still adjusting to tectonic forcing. 
    more » « less