skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Alexandrov spaces with integral current structure
We endow each closed, orientable Alexandrov space (X, d) with an integral current T of weight equal to 1, ∂T = 0 and set(T) = X, in other words, we prove that (X, d, T) is an integral current space with no boundary. Combining this result with a result of Li and Perales, we show that non-collapsing sequences of these spaces with uniform lower curvature and diameter bounds admit subsequences whose Gromov-Hausdorff and intrinsic flat limits agree.  more » « less
Award ID(s):
1906404 1611780
PAR ID:
10280171
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Liu, Kefeng
Date Published:
Journal Name:
Communications in analysis and geometry
Volume:
29
Issue:
1
ISSN:
1944-9992
Page Range / eLocation ID:
115-149
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study integral points on varieties with infinite étale fundamental groups. More precisely, for a number field $$F$$ and $X/F$ a smooth projective variety, we prove that for any geometrically Galois cover $$\varphi \colon Y \to X$$ of degree at least $$2\dim (X)^{2}$$, there exists an ample line bundle $$\mathscr{L}$$ on $$Y$$ such that for a general member $$D$$ of the complete linear system $$|\mathscr{L}|$$, $$D$$ is geometrically irreducible and any set of $$\varphi (D)$$-integral points on $$X$$ is finite. We apply this result to varieties with infinite étale fundamental group to give new examples of irreducible, ample divisors on varieties for which finiteness of integral points is provable. 
    more » « less
  2. Consider the Vlasov–Poisson–Landau system with Coulomb potential in the weakly collisional regime on a 3 3 -torus, i.e. ∂<#comment/> t F ( t , x , v ) + v i ∂<#comment/> x i F ( t , x , v ) + E i ( t , x ) ∂<#comment/> v i F ( t , x , v ) = ν<#comment/> Q ( F , F ) ( t , x , v ) , E ( t , x ) = ∇<#comment/> Δ<#comment/> −<#comment/> 1 ( ∫<#comment/> R 3 F ( t , x , v ) d v −<#comment/> ∫<#comment/> −<#comment/> T 3 ∫<#comment/> R 3 F ( t , x , v ) d v d x ) , \begin{align*} \partial _t F(t,x,v) + v_i \partial _{x_i} F(t,x,v) + E_i(t,x) \partial _{v_i} F(t,x,v) = \nu Q(F,F)(t,x,v),\\ E(t,x) = \nabla \Delta ^{-1} (\int _{\mathbb R^3} F(t,x,v)\, \mathrm {d} v - {{\int }\llap {-}}_{\mathbb T^3} \int _{\mathbb R^3} F(t,x,v)\, \mathrm {d} v \, \mathrm {d} x), \end{align*} with ν<#comment/> ≪<#comment/> 1 \nu \ll 1 . We prove that for ϵ<#comment/> > 0 \epsilon >0 sufficiently small (but independent of ν<#comment/> \nu ), initial data which are O ( ϵ<#comment/> ν<#comment/> 1 / 3 ) O(\epsilon \nu ^{1/3}) -Sobolev space perturbations from the global Maxwellians lead to global-in-time solutions which converge to the global Maxwellians as t →<#comment/> ∞<#comment/> t\to \infty . The solutions exhibit uniform-in- ν<#comment/> \nu Landau damping and enhanced dissipation. Our main result is analogous to an earlier result of Bedrossian for the Vlasov–Poisson–Fokker–Planck equation with the same threshold. However, unlike in the Fokker–Planck case, the linear operator cannot be inverted explicitly due to the complexity of the Landau collision operator. For this reason, we develop an energy-based framework, which combines Guo’s weighted energy method with the hypocoercive energy method and the commuting vector field method. The proof also relies on pointwise resolvent estimates for the linearized density equation. 
    more » « less
  3. Abstract For a Brownian directed polymer in a Gaussian random environment, with q ( t , ⋅) denoting the quenched endpoint density and Q n ( t , x 1 , … , x n ) = E [ q ( t , x 1 ) … q ( t , x n ) ] , we derive a hierarchical PDE system satisfied by { Q n } n ⩾ 1 . We present two applications of the system: (i) we compute the generator of { μ t ( d x ) = q ( t , x ) d x } t ⩾ 0 for some special functionals, where { μ t ( d x ) } t ⩾ 0 is viewed as a Markov process taking values in the space of probability measures; (ii) in the high temperature regime with d ⩾ 3, we prove a quantitative central limit theorem for the annealed endpoint distribution of the diffusively rescaled polymer path. We also study a nonlocal diffusion-reaction equation motivated by the generator and establish a super-diffusive O ( t 2/3 ) scaling. 
    more » « less
  4. We study integral operators on the space of square-integrable functions from a compact set, X, to a separableHilbert space,H. The kernel of such an operator takes values in the ideal of Hilbert–Schmidt operators on H.We establish regularity conditions on the kernel under which the associated integral operator is trace class. First, we extend Mercer’s theorem to operator-valued kernels by proving that a continuous, nonnegative-definite, Hermitian symmetric kernel defines a trace class integral operator on L2(X; H) under an additional assumption. Second, we show that a general operator-valued kernel that is defined on a compact set and that is Hölder continuous with Hölder exponent greater than a half is trace class provided that the operator-valued kernel is essentially bounded as a mapping into the space of trace class operators on H. Finally, when dim H < ∞, we show that an analogous result also holds for matrix-valued kernels on the real line, provided that an additional exponential decay assumption holds. 
    more » « less
  5. Abstract Given a Banach space X and a real number α ≥ 1, we write: (1) D ( X ) ≤ α if, for any locally finite metric space A , all finite subsets of which admit bilipschitz embeddings into X with distortions ≤ C , the space A itself admits a bilipschitz embedding into X with distortion ≤ α ⋅ C ; (2) D ( X ) = α + if, for every ϵ > 0, the condition D ( X ) ≤ α + ϵ holds, while D ( X ) ≤ α does not; (3) D ( X ) ≤ α + if D ( X ) = α + or D ( X ) ≤ α. It is known that D ( X ) is bounded by a universal constant, but the available estimates for this constant are rather large. The following results have been proved in this work: (1) D ((⊕ n =1 ∞ X n ) p ) ≤ 1 + for every nested family of finite-dimensional Banach spaces { X n } n =1 ∞ and every 1 ≤ p ≤ ∞. (2) D ((⊕ n =1 ∞ ℓ ∞ n ) p ) = 1 + for 1 < p < ∞. (3) D ( X ) ≤ 4 + for every Banach space X with no nontrivial cotype. Statement (3) is a strengthening of the Baudier–Lancien result (2008). 
    more » « less