skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: The Vlasov–Poisson–Landau system in the weakly collisional regime

Consider the Vlasov–Poisson–Landau system with Coulomb potential in the weakly collisional regime on a33-torus, i.e.∂<#comment/>tF(t,x,v)+vi∂<#comment/>xiF(t,x,v)+Ei(t,x)∂<#comment/>viF(t,x,v)=ν<#comment/>Q(F,F)(t,x,v),E(t,x)=∇<#comment/>Δ<#comment/>−<#comment/>1(∫<#comment/>R3F(t,x,v)dv−<#comment/>∫<#comment/>−<#comment/>T3∫<#comment/>R3F(t,x,v)dvdx),\begin{align*} \partial _t F(t,x,v) + v_i \partial _{x_i} F(t,x,v) + E_i(t,x) \partial _{v_i} F(t,x,v) = \nu Q(F,F)(t,x,v),\\ E(t,x) = \nabla \Delta ^{-1} (\int _{\mathbb R^3} F(t,x,v)\, \mathrm {d} v - {{\int }\llap {-}}_{\mathbb T^3} \int _{\mathbb R^3} F(t,x,v)\, \mathrm {d} v \, \mathrm {d} x), \end{align*}withν<#comment/>≪<#comment/>1\nu \ll 1. We prove that forϵ<#comment/>>0\epsilon >0sufficiently small (but independent ofν<#comment/>\nu), initial data which areO(ϵ<#comment/>ν<#comment/>1/3)O(\epsilon \nu ^{1/3})-Sobolev space perturbations from the global Maxwellians lead to global-in-time solutions which converge to the global Maxwellians ast→<#comment/>∞<#comment/>t\to \infty. The solutions exhibit uniform-in-ν<#comment/>\nuLandau damping and enhanced dissipation.

Our main result is analogous to an earlier result of Bedrossian for the Vlasov–Poisson–Fokker–Planck equation with the same threshold. However, unlike in the Fokker–Planck case, the linear operator cannot be inverted explicitly due to the complexity of the Landau collision operator. For this reason, we develop an energy-based framework, which combines Guo’s weighted energy method with the hypocoercive energy method and the commuting vector field method. The proof also relies on pointwise resolvent estimates for the linearized density equation.

 
more » « less
Award ID(s):
2054726
PAR ID:
10552208
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Mathematical Society
Date Published:
Journal Name:
Journal of the American Mathematical Society
ISSN:
0894-0347
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Proving the “expectation-threshold” conjecture of Kahn and Kalai [Combin. Probab. Comput. 16 (2007), pp. 495–502], we show that for any increasing propertyF\mathcal {F}on a finite setXX,\[pc(F)=O(q(F)log⁡<#comment/>ℓ<#comment/>(F)),p_c(\mathcal {F})=O(q(\mathcal {F})\log \ell (\mathcal {F})),\]wherepc(F)p_c(\mathcal {F})andq(F)q(\mathcal {F})are the threshold and “expectation threshold” ofF\mathcal {F}, andℓ<#comment/>(F)\ell (\mathcal {F})is the maximum of22and the maximum size of a minimal member ofF\mathcal {F}.

     
    more » « less
  2. In this paper we derive the best constant for the followingL∞<#comment/>L^{\infty }-type Gagliardo-Nirenberg interpolation inequality‖<#comment/>u‖<#comment/>L∞<#comment/>≤<#comment/>Cq,∞<#comment/>,p‖<#comment/>u‖<#comment/>Lq+11−<#comment/>θ<#comment/>‖<#comment/>∇<#comment/>u‖<#comment/>Lpθ<#comment/>,θ<#comment/>=pddp+(p−<#comment/>d)(q+1),\begin{equation*} \|u\|_{L^{\infty }}\leq C_{q,\infty ,p} \|u\|^{1-\theta }_{L^{q+1}}\|\nabla u\|^{\theta }_{L^p},\quad \theta =\frac {pd}{dp+(p-d)(q+1)}, \end{equation*}where parametersqqandppsatisfy the conditionsp>d≥<#comment/>1p>d\geq 1,q≥<#comment/>0q\geq 0. The best constantCq,∞<#comment/>,pC_{q,\infty ,p}is given byCq,∞<#comment/>,p=θ<#comment/>−<#comment/>θ<#comment/>p(1−<#comment/>θ<#comment/>)θ<#comment/>pMc−<#comment/>θ<#comment/>d,Mc∫<#comment/>Rduc,∞<#comment/>q+1dx,\begin{equation*} C_{q,\infty ,p}=\theta ^{-\frac {\theta }{p}}(1-\theta )^{\frac {\theta }{p}}M_c^{-\frac {\theta }{d}},\quad M_c≔\int _{\mathbb {R}^d}u_{c,\infty }^{q+1} dx, \end{equation*}whereuc,∞<#comment/>u_{c,\infty }is the unique radial non-increasing solution to a generalized Lane-Emden equation. The case of equality holds whenu=Auc,∞<#comment/>(λ<#comment/>(x−<#comment/>x0))u=Au_{c,\infty }(\lambda (x-x_0))for any real numbersAA,λ<#comment/>>0\lambda >0andx0∈<#comment/>Rdx_{0}\in \mathbb {R}^d. In fact, the generalized Lane-Emden equation inRd\mathbb {R}^dcontains a delta function as a source and it is a Thomas-Fermi type equation. Forq=0q=0ord=1d=1,uc,∞<#comment/>u_{c,\infty }have closed form solutions expressed in terms of the incomplete Beta functions. Moreover, we show thatuc,m→<#comment/>uc,∞<#comment/>u_{c,m}\to u_{c,\infty }andCq,m,p→<#comment/>Cq,∞<#comment/>,pC_{q,m,p}\to C_{q,\infty ,p}asm→<#comment/>+∞<#comment/>m\to +\inftyford=1d=1, whereuc,mu_{c,m}andCq,m,pC_{q,m,p}are the function achieving equality and the best constant ofLmL^m-type Gagliardo-Nirenberg interpolation inequality, respectively.

     
    more » « less
  3. We show that for any even log-concave probability measureμ<#comment/>\muonRn\mathbb {R}^n, any pair of symmetric convex setsKKandLL, and anyλ<#comment/>∈<#comment/>[0,1]\lambda \in [0,1],μ<#comment/>((1−<#comment/>λ<#comment/>)K+λ<#comment/>L)cn≥<#comment/>(1−<#comment/>λ<#comment/>)μ<#comment/>(K)cn+λ<#comment/>μ<#comment/>(L)cn,\begin{equation*} \mu ((1-\lambda ) K+\lambda L)^{c_n}\geq (1-\lambda ) \mu (K)^{c_n}+\lambda \mu (L)^{c_n}, \end{equation*}wherecn≥<#comment/>n−<#comment/>4−<#comment/>o(1)c_n\geq n^{-4-o(1)}. This constitutes progress towards the dimensional Brunn-Minkowski conjecture (see Richard J. Gardner and Artem Zvavitch [Tran. Amer. Math. Soc. 362 (2010), pp. 5333–5353]; Andrea Colesanti, Galyna V. Livshyts, Arnaud Marsiglietti [J. Funct. Anal. 273 (2017), pp. 1120–1139]). Moreover, our bound improves for various special classes of log-concave measures.

     
    more » « less
  4. For each odd integern≥<#comment/>3n \geq 3, we construct a rank-3 graphΛ<#comment/>n\Lambda _nwith involutionγ<#comment/>n\gamma _nwhose realC∗<#comment/>C^*-algebraCR∗<#comment/>(Λ<#comment/>n,γ<#comment/>n)C^*_{\scriptscriptstyle \mathbb {R}}(\Lambda _n, \gamma _n)is stably isomorphic to the exotic Cuntz algebraEn\mathcal E_n. This construction is optimal, as we prove that a rank-2 graph with involution(Λ<#comment/>,γ<#comment/>)(\Lambda ,\gamma )can never satisfyCR∗<#comment/>(Λ<#comment/>,γ<#comment/>)∼<#comment/>MEEnC^*_{\scriptscriptstyle \mathbb {R}}(\Lambda , \gamma )\sim _{ME} \mathcal E_n, and Boersema reached the same conclusion for rank-1 graphs (directed graphs) in [Münster J. Math.10(2017), pp. 485–521, Corollary 4.3]. Our construction relies on a rank-1 graph with involution(Λ<#comment/>,γ<#comment/>)(\Lambda , \gamma )whose realC∗<#comment/>C^*-algebraCR∗<#comment/>(Λ<#comment/>,γ<#comment/>)C^*_{\scriptscriptstyle \mathbb {R}}(\Lambda , \gamma )is stably isomorphic to the suspensionSRS \mathbb {R}. In the Appendix, we show that theii-fold suspensionSiRS^i \mathbb {R}is stably isomorphic to a graph algebra iff−<#comment/>2≤<#comment/>i≤<#comment/>1-2 \leq i \leq 1.

     
    more » « less
  5. We develop a higher semiadditive version of Grothendieck-Witt theory. We then apply the theory in the case of a finite field to study the higher semiadditive structure of theK(1)K(1)-local sphereSK(1)\mathbb {S}_{K(1)}at the prime22, in particular realizing the non-22-adic rational element1+ε<#comment/>∈<#comment/>π<#comment/>0SK(1)1+\varepsilon \in \pi _0\mathbb {S}_{K(1)}as a “semiadditive cardinality.” As a further application, we compute and clarify certain power operations inπ<#comment/>0SK(1)\pi _0\mathbb {S}_{K(1)}.

     
    more » « less