Millions of in situ ocean temperature profiles have been collected historically using various instrument types with varying sensor accuracy and then assembled into global databases. These are essential to our current understanding of the changing state of the oceans, sea level, Earth’s climate, marine ecosystems and fisheries, and for constraining model projections of future change that underpin mitigation and adaptation solutions. Profiles distributed shortly after collection are also widely used in operational applications such as real-time monitoring and forecasting of the ocean state and weather prediction. Before use in scientific or societal service applications, quality control (QC) procedures need to be applied to flag and ultimately remove erroneous data. Automatic QC (AQC) checks are vital to the timeliness of operational applications and for reducing the volume of dubious data which later require QC processing by a human for delayed mode applications. Despite the large suite of evolving AQC checks developed by institutions worldwide, the most effective set of AQC checks was not known. We have developed a framework to assess the performance of AQC checks, under the auspices of the International Quality Controlled Ocean Database (IQuOD) project. The IQuOD-AQC framework is an open-source collaborative software infrastructure built in Python (available from https://github.com/IQuOD ). Sixty AQC checks have been implemented in this framework. Their performance was benchmarked against three reference datasets which contained a spectrum of instrument types and error modes flagged in their profiles. One of these (a subset of the Quality-controlled Ocean Temperature Archive (QuOTA) dataset that had been manually inspected for quality issues by its creators) was also used to identify optimal sets of AQC checks. Results suggest that the AQC checks are effective for most historical data, but less so in the case of data from Mechanical Bathythermographs (MBTs), and much less effective for Argo data. The optimal AQC sets will be applied to generate quality flags for the next release of the IQuOD dataset. This will further elevate the quality and historical value of millions of temperature profile data which have already been improved by IQuOD intelligent metadata and observational uncertainty information ( https://doi.org/10.7289/v51r6nsf ).
more »
« less
International Quality-Controlled Ocean Database (IQuOD) v0.1: The Temperature Uncertainty Specification
Ocean temperature observations are crucial for a host of climate research and forecasting activities, such as climate monitoring, ocean reanalysis and state estimation, seasonal-to-decadal forecasts, and ocean forecasting. For all of these applications, it is crucial to understand the uncertainty attached to each of the observations, accounting for changes in instrument technology and observing practices over time. Here, we describe the rationale behind the uncertainty specification provided for all in situ ocean temperature observations in the International Quality-controlled Ocean Database (IQuOD) v0.1, a value-added data product served alongside the World Ocean Database (WOD). We collected information from manufacturer specifications and other publications, providing the end user with uncertainty estimates based mainly on instrument type, along with extant auxiliary information such as calibration and collection method. The provision of a consistent set of observation uncertainties will provide a more complete understanding of historical ocean observations used to examine the changing environment. Moving forward, IQuOD will continue to work with the ocean observation, data assimilation and ocean climate communities to further refine uncertainty quantification. We encourage submissions of metadata and information about historical practices to the IQuOD project and WOD.
more »
« less
- PAR ID:
- 10280252
- Date Published:
- Journal Name:
- Frontiers in Marine Science
- Volume:
- 8
- ISSN:
- 2296-7745
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This paper describes the new Regional Arctic Ocean/sea ice Reanalysis (RARE) with a domain that spans a subpolar/polar cap poleward of 45°N. Sequential data assimilation constrains temperature and salinity using World Ocean Database profiles as well as in situ and satellite SST, and PIOMAS sea ice thickness estimates. The 41-yr (1980–2020) RARE1.15.2 reanalysis with resolution varying between 2 and 5 km horizontally and 1–10 m vertically in the upper 100 m is examined. To explore the impact of resolution RARE1.15.2 is compared to a coarser-resolution SODA3.15.2, which uses the same modeling and data assimilation system. Improving resolution in the reanalysis system improves agreement with observations. It produces stronger more compact currents, enhances eddy kinetic energy, and strengthens along-isopycnal heat and salt transports, but reduces vertical exchanges and thus strengthens upper ocean haline stratification. RARE1.15.2 and SODA3.15.2 are also compared to the Hadley Center EN4.2.2 statistical objective analysis. In regions of reasonable data coverage such as the Nordic seas the three products produce similar time-mean distributions of temperature and salinity. But in regions of poor coverage and in regions where the coverage changes in time EN4.2.2 suffers more from those inhomogeneities. Finally, the impact on the Arctic of interannual temperature fluctuations in the subpolar gyres on the Arctic Ocean is compared. The influence of the subpolar North Pacific is limited to a region surrounding Bering Strait. The influence of the subpolar North Atlantic, in contrast, spreads throughout the Nordic seas and Barents Sea in all three products within two years. Significance StatementThe Arctic Ocean/sea ice system plays crucial roles in climate variability and change by controlling the northern end of the oceanic overturning circulation, the equator to pole air pressure gradient, and Earth’s energy balance. Yet the historical ocean observation set is sparse and inhomogeneous, while ocean dynamics has challengingly fine horizontal and vertical scales. This paper introduces a new Regional Arctic Ocean/sea ice Reanalysis (RARE) whose goal is to use the combined constraints of mesoscale ocean dynamics, historical observations, surface meteorology, and continental runoff in a data assimilation framework to reconstruct historical variability. RARE is used to produce a 41-yr ocean/sea ice reanalysis 1980–2020 whose results are described here.more » « less
-
Abstract Historical observations of Earth’s climate underpin our knowledge and predictions of climate variability and change. However, the observations are incomplete and uncertain, and existing datasets based on these observations typically do not assimilate observations simultaneously across different components of the climate system, yielding inconsistencies that limit understanding of coupled climate dynamics. Here, we use coupled data assimilation, which synthesizes observational and dynamical constraints across all climate fields simultaneously, to reconstruct globally resolved sea surface temperature (SST), near-surface air temperature (T), sea level pressure (SLP), and sea ice concentration (SIC), over 1850–2023. We use a Kalman filter and forecasts from an efficient emulator, the linear inverse model (LIM), to assimilate observations of SST, landT, marine SLP, and satellite-era SIC. We account for model error by training LIMs on eight CMIP6 models, and we use the LIMs to generate eight independent reanalyses with 200 ensemble members, yielding 1600 total members. Key findings in the tropics include post-1980 trends in the Walker circulation that are consistent with past variability, whereas the tropical SST contrast (the difference between warmer and colder SSTs) shows a distinct strengthening since 1975. El Niño–Southern Oscillation (ENSO) amplitude exhibits substantial low-frequency variability and a local maximum in variance over 1875–1910. In polar regions, we find a muted cooling trend in the Southern Ocean post-1980 and substantial uncertainty. Changes in Antarctic sea ice are relatively small between 1850 and 2000, while Arctic sea ice declines by 0.5 ± 0.1 (1σ) million km2during the 1920s. Significance StatementThe key advance in our reconstruction is that the ocean, atmosphere, and sea ice are dynamically consistent with each other and with observations across all components, thus forming a true climate reanalysis. Existing climate datasets are typically derived separately for each component (e.g., atmosphere, ocean, and sea ice), leading to spurious trends and inconsistencies in coupled climate variability. We use coupled data assimilation to unify observations and coupled dynamics across components. We combine forecasts from climate models with observations from ocean vessels and weather stations to produce monthly state estimates spanning 1850–2023 and a novel quantification of globally resolved uncertainty. This reconstruction provides insights into historical variability and trends while motivating future efforts to reduce uncertainties in the climate record.more » « less
-
null (Ed.)The launch of the National Oceanic and Atmospheric Administration (NOAA)/ National Aeronautics and Space Administration (NASA) Suomi National Polar-orbiting Partnership (S-NPP) and its follow-on NOAA Joint Polar Satellite Systems (JPSS) satellites marks the beginning of a new era of operational satellite observations of the Earth and atmosphere for environmental applications with high spatial resolution and sampling rate. The S-NPP and JPSS are equipped with five instruments, each with advanced design in Earth sampling, including the Advanced Technology Microwave Sounder (ATMS), the Cross-track Infrared Sounder (CrIS), the Ozone Mapping and Profiler Suite (OMPS), the Visible Infrared Imaging Radiometer Suite (VIIRS), and the Clouds and the Earth’s Radiant Energy System (CERES). Among them, the ATMS is the new generation of microwave sounder measuring temperature profiles from the surface to the upper stratosphere and moisture profiles from the surface to the upper troposphere, while CrIS is the first of a series of advanced operational hyperspectral sounders providing more accurate atmospheric and moisture sounding observations with higher vertical resolution for weather and climate applications. The OMPS instrument measures solar backscattered ultraviolet to provide information on the concentrations of ozone in the Earth’s atmosphere, and VIIRS provides global observations of a variety of essential environmental variables over the land, atmosphere, cryosphere, and ocean with visible and infrared imagery. The CERES instrument measures the solar energy reflected by the Earth, the longwave radiative emission from the Earth, and the role of cloud processes in the Earth’s energy balance. Presently, observations from several instruments on S-NPP and JPSS-1 (re-named NOAA-20 after launch) provide near real-time monitoring of the environmental changes and improve weather forecasting by assimilation into numerical weather prediction models. Envisioning the need for consistencies in satellite retrievals, improving climate reanalyses, development of climate data records, and improving numerical weather forecasting, the NOAA/Center for Satellite Applications and Research (STAR) has been reprocessing the S-NPP observations for ATMS, CrIS, OMPS, and VIIRS through their life cycle. This article provides a summary of the instrument observing principles, data characteristics, reprocessing approaches, calibration algorithms, and validation results of the reprocessed sensor data records. The reprocessing generated consistent Level-1 sensor data records using unified and consistent calibration algorithms for each instrument that removed artificial jumps in data owing to operational changes, instrument anomalies, contaminations by anomaly views of the environment or spacecraft, and other causes. The reprocessed sensor data records were compared with and validated against other observations for a consistency check whenever such data were available. The reprocessed data will be archived in the NOAA data center with the same format as the operational data and technical support for data requests. Such a reprocessing is expected to improve the efficiency of the use of the S-NPP and JPSS satellite data and the accuracy of the observed essential environmental variables through either consistent satellite retrievals or use of the reprocessed data in numerical data assimilations.more » « less
-
Abstract Ocean observations are expensive and difficult to collect. Designing effective ocean observing systems therefore warrants deliberate, quantitative strategies. We leverage adjoint modeling and Hessian uncertainty quantification (UQ) within the ECCO (Estimating the Circulation and Climate of the Ocean) framework to explore a new design strategy for ocean climate observing systems. Within this context, an observing system is optimal if it minimizes uncertainty in a set of investigator‐defined quantities of interest (QoIs), such as oceanic transports or other key climate indices. We show that Hessian UQ unifies three design concepts. (1) An observing system reduces uncertainty in a target QoI most effectively when it is sensitive to the same dynamical controls as the QoI. The dynamical controls are exposed by the Hessian eigenvector patterns of the model‐data misfit function. (2) Orthogonality of the Hessian eigenvectors rigorously accounts for redundancy between distinct members of the observing system. (3) The Hessian eigenvalues determine the overall effectiveness of the observing system, and are controlled by the sensitivity‐to‐noise ratio of the observational assets (analogous to the statistical signal‐to‐noise ratio). We illustrate Hessian UQ and its three underlying concepts in a North Atlantic case study. Sea surface temperature observations inform mainly local air‐sea fluxes. In contrast, subsurface temperature observations reduce uncertainty over basin‐wide scales, and can therefore inform transport QoIs at great distances. This research provides insight into the design of effective observing systems that maximally inform the target QoIs, while being complementary to the existing observational database.more » « less
An official website of the United States government

