Abstract Given the role played by the historical and extensive coverage of sea ice concentration (SIC) observations in reconstructing the long‐term variability of Antarctic sea ice, and the limited attention given to model‐dependent parameters in current sea ice data assimilation studies, this study focuses on enhancing the performance of the Data Assimilation System for the Southern Ocean in assimilating SIC through optimizing the localization and observation error estimate, and two assimilation experiments were conducted from 1979 to 2018. By comparing the results with the sea ice extent of the Southern Ocean and the sea ice thickness in the Weddell Sea, it becomes evident that the experiment with optimizations outperforms that without optimizations due to achieving more reasonable error estimates. Investigating uncertainties of the sea ice volume anomaly modeling reveals the importance of the sea ice‐ocean interaction in the SIC assimilation, implying the necessity of assimilating more oceanic and sea‐ice observations.
more »
« less
Monthly Sea Surface Temperature, Sea Ice, and Sea Level Pressure over 1850–2023 from Coupled Data Assimilation
Abstract Historical observations of Earth’s climate underpin our knowledge and predictions of climate variability and change. However, the observations are incomplete and uncertain, and existing datasets based on these observations typically do not assimilate observations simultaneously across different components of the climate system, yielding inconsistencies that limit understanding of coupled climate dynamics. Here, we use coupled data assimilation, which synthesizes observational and dynamical constraints across all climate fields simultaneously, to reconstruct globally resolved sea surface temperature (SST), near-surface air temperature (T), sea level pressure (SLP), and sea ice concentration (SIC), over 1850–2023. We use a Kalman filter and forecasts from an efficient emulator, the linear inverse model (LIM), to assimilate observations of SST, landT, marine SLP, and satellite-era SIC. We account for model error by training LIMs on eight CMIP6 models, and we use the LIMs to generate eight independent reanalyses with 200 ensemble members, yielding 1600 total members. Key findings in the tropics include post-1980 trends in the Walker circulation that are consistent with past variability, whereas the tropical SST contrast (the difference between warmer and colder SSTs) shows a distinct strengthening since 1975. El Niño–Southern Oscillation (ENSO) amplitude exhibits substantial low-frequency variability and a local maximum in variance over 1875–1910. In polar regions, we find a muted cooling trend in the Southern Ocean post-1980 and substantial uncertainty. Changes in Antarctic sea ice are relatively small between 1850 and 2000, while Arctic sea ice declines by 0.5 ± 0.1 (1σ) million km2during the 1920s. Significance StatementThe key advance in our reconstruction is that the ocean, atmosphere, and sea ice are dynamically consistent with each other and with observations across all components, thus forming a true climate reanalysis. Existing climate datasets are typically derived separately for each component (e.g., atmosphere, ocean, and sea ice), leading to spurious trends and inconsistencies in coupled climate variability. We use coupled data assimilation to unify observations and coupled dynamics across components. We combine forecasts from climate models with observations from ocean vessels and weather stations to produce monthly state estimates spanning 1850–2023 and a novel quantification of globally resolved uncertainty. This reconstruction provides insights into historical variability and trends while motivating future efforts to reduce uncertainties in the climate record.
more »
« less
- PAR ID:
- 10633288
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 38
- Issue:
- 19
- ISSN:
- 0894-8755
- Format(s):
- Medium: X Size: p. 5461-5490
- Size(s):
- p. 5461-5490
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Southern Ocean surface cooling and Antarctic sea ice expansion from 1979 through 2015 have been linked both to changing atmospheric circulation and melting of Antarctica's grounded ice and ice shelves. However, climate models have largely been unable to reproduce this behavior. Here we examine the contribution of observed wind variability and Antarctic meltwater to Southern Ocean sea surface temperature (SST) and Antarctic sea ice. The free‐running, CMIP6‐class GISS‐E2.1‐G climate model can simulate regional cooling and neutral sea ice trends due to internal variability, but they are unlikely. Constraining the model to observed winds and meltwater fluxes from 1990 through 2021 gives SST variability and trends consistent with observations. Meltwater and winds contribute a similar amount to the SST trend, and winds contribute more to the sea ice trend than meltwater. However, while the constrained model captures much of the observed sea ice variability, it only partially captures the post‐2015 sea ice reduction.more » « less
-
Abstract We characterize high‐frequency variability of sea ice extent (HFVSIE) in observations and climate models. We find that HFVSIE in models is biased low with respect to observations, especially at synoptic timescales (<20 days) in the Arctic year‐round and at monthly timescales (30–60 days) in Antarctica in winter. Models show large spread in HFVSIE, especially in Antarctica. This spread is partly explained by sea ice mean‐state while model biases in sea level pressure (SLP) and wind variability do not appear to play a major role in HFVSIE spread. Extreme sea ice extent (SIE) changes are associated with SLP anomaly dipoles aligned with the sea ice edge and winds directed on‐ice (off‐ice) during SIE loss (gain) events. In observations, these events are also associated with distinct ocean wave states during the cold season, when waves are greater (smaller) and travel toward (away from) the sea ice edge during SIE loss (gain) events.more » « less
-
null (Ed.)Abstract We investigate how sea ice decline in summer and warmer ocean and surface temperatures in winter affect sea ice growth in the Arctic. Sea ice volume changes are estimated from satellite observations during winter from 2002 to 2019 and partitioned into thermodynamic growth and dynamic volume change. Both components are compared to validated sea ice-ocean models forced by reanalysis data to extend observations back to 1980 and to understand the mechanisms that cause the observed trends and variability. We find that a negative feedback driven by the increasing sea ice retreat in summer yields increasing thermodynamic ice growth during winter in the Arctic marginal seas eastward from the Laptev Sea to the Beaufort Sea. However, in the Barents and Kara Seas, this feedback seems to be overpowered by the impact of increasing oceanic heat flux and air temperatures, resulting in negative trends in thermodynamic ice growth of -2 km 3 month -1 yr -1 on average over 2002-2019 derived from satellite observations.more » « less
-
Abstract In a recent paper, we argued that ocean dynamics increase the variability of midlatitude sea surface temperatures (SSTs) on monthly to interannual time scales, but act to damp lower-frequency SST variability over broad midlatitude regions. Here, we use two configurations of a simple stochastic climate model to provide new insights into this important aspect of climate variability. The simplest configuration includes the forcing and damping of SST variability by observed surface heat fluxes only, and the more complex configuration includes forcing and damping by ocean processes, which are estimated indirectly from monthly observations. It is found that the simple model driven only by the observed surface heat fluxes generally produces midlatitude SST power spectra that are tooredcompared to observations. Including ocean processes in the model reduces this discrepancy bywhiteningthe midlatitude SST spectra. In particular, ocean processes generally increase the SST variance on <2-yr time scales and decrease it on >2-yr time scales. This happens because oceanic forcing increases the midlatitude SST variance across many time scales, but oceanic damping outweighs oceanic forcing on >2-yr time scales, particularly away from the western boundary currents. The whitening of midlatitude SST variability by ocean processes also operates in NCAR’s Community Earth System Model (CESM). That is, midlatitude SST spectra are generally redder when the same atmospheric model is coupled to a slab rather than dynamically active ocean model. Overall, the results suggest that forcing and damping by ocean processes play essential roles in driving midlatitude SST variability.more » « less
An official website of the United States government
