Despite the long-standing calls for increased levels of interdisciplinary research as a way to address society’s grand challenges, most science is still disciplinary. To understand the slow rate of convergence to more interdisciplinary research, we examine 154,021 researchers who received a PhD in a biomedical field between 1970 and 2013, measuring the interdisciplinarity of their articles using the disciplinary composition of references. We provide a range of evidence that interdisciplinary research is impactful, but that those who conduct it face early career impediments. The researchers who are initially the most interdisciplinary tend to stop publishing earlier in their careers—it takes about 8 y for half of the researchers in the top percentile in terms of initial interdisciplinarity to stop publishing, compared to more than 20 y for moderately interdisciplinary researchers (10th to 75th percentiles). Moreover, perhaps in response to career challenges, initially interdisciplinary researchers on average decrease their interdisciplinarity over time. These forces reduce the stock of interdisciplinary researchers who can train future cohorts. Indeed, new graduates tend to be less interdisciplinary than the stock of active researchers. We show that interdisciplinarity does increase over time despite these dampening forces because initially disciplinary researchers become more interdisciplinary as their careers progress. 
                        more » 
                        « less   
                    
                            
                            A Decade of Incorporating Social Sciences in the Integrated Marine Biosphere Research Project (IMBeR): Much Done, Much to Do?
                        
                    
    
            Successful management and mitigation of marine challenges depends on cooperation and knowledge sharing which often occurs across culturally diverse geographic regions. Global ocean science collaboration is therefore essential for developing global solutions. Building effective global research networks that can enable collaboration also need to ensure inter- and transdisciplinary research approaches to tackle complex marine socio-ecological challenges. To understand the contribution of interdisciplinary global research networks to solving these complex challenges, we use the Integrated Marine Biosphere Research (IMBeR) project as a case study. We investigated the diversity and characteristics of 1,827 scientists from 11 global regions who were attendees at different IMBeR global science engagement opportunities since 2009. We also determined the role of social science engagement in natural science based regional programmes (using key informants) and identified the potential for enhanced collaboration in the future. Event attendees were predominantly from western Europe, North America, and East Asia. But overall, in the global network, there was growing participation by females, students and early career researchers, and social scientists, thus assisting in moving toward interdisciplinarity in IMBeR research. The mainly natural science oriented regional programmes showed mixed success in engaging and collaborating with social scientists. This was mostly attributed to the largely natural science (i.e., biological, physical) goals and agendas of the programmes, and the lack of institutional support and push to initiate connections with social science. Recognising that social science research may not be relevant to all the aims and activities of all regional programmes, all researchers however, recognised the (potential) benefits of interdisciplinarity, which included broadening scientists’ understanding and perspectives, developing connections and interlinkages, and making science more useful. Pathways to achieve progress in regional programmes fell into four groups: specific funding, events to come together, within-programme-reflections, and social science champions. Future research programmes should have a strategic plan to be truly interdisciplinary, engaging natural and social sciences, as well as aiding early career professionals to actively engage in such programmes. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1840868
- PAR ID:
- 10280256
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Frontiers in Marine Science
- Volume:
- 8
- ISSN:
- 2296-7745
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Capacity sharing in the ocean sciences is essential for addressing pressing environmental challenges and fostering sustainable stewardship of marine ecosystems. This article focuses on three important capacity-sharing programs operating in Africa: Early Career Ocean Professionals (ECOP) Africa, Citizen Observation of Local Litter in Coastal Ecosystems (COLLECT) (a project of the Partnership for Observation of the Global Ocean), and Mundus Maris Africa. ECOP Africa, a pioneering platform for early career ocean professionals, emphasizes mentorship, training, and knowledge exchange to empower young marine scientists across the continent. Through dynamic programs and events, ECOP Africa is catalyzing interdisciplinary collaboration and inspiring the next generation of ocean leaders. Similarly, COLLECT leverages citizen science to tackle plastic pollution in coastal environments. By training secondary school students as “citizen scientists,” COLLECT has not only generated critical data on the distribution and abundance of coastal debris but also fostered environmental awareness and local engagement. These initiatives demonstrate the power of inclusive, community-driven approaches to capacity sharing in the ocean sciences. They highlight the transformative potential of combining open science, education, and international collaboration to address global challenges such as plastic pollution and climate change while empowering local communities to take active roles in preserving their marine environments.more » « less
- 
            Increasing trends in global flood risk are driven by a complex web of interactions among natural, built environment, and social systems. As a result, flood resilience research is an ideal topic for an interdisciplinary approach. Core characteristics of interdisciplinary research are team collaboration and the systematic integration of disciplinary knowledge, in both problem formulation and analytical methods. Indicators of interdisciplinarity tend to focus on scholarly outcomes, but collaborative processes may be even more important for knowledge integration. In this Perspective piece, we outline and advocate a two‐pronged approach to enhance potential for integrating knowledge: using collaborative proximity to assess team readiness to conduct interdisciplinary research and employing program evaluation to assess change in proximity components over time. To do so, we draw on scholarship in economic geography, team science, and program evaluation. We then connect the findings to a case study of collaboration within our interdisciplinary team of flood researchers, program evaluators, and local stakeholders, as we navigate a multi‐institutional project on flood resilience.more » « less
- 
            Synopsis Science is becoming increasingly interdisciplinary; the widespread emergence of dedicated interdisciplinary journals, conferences, and graduate programs reflects this trend. Interdisciplinary scientific events are extremely valuable in that they offer opportunities for career advancement, especially among early career researchers, for collaboration beyond traditional disciplinary echo chambers, and for the creative generation of innovative solutions to longstanding scientific problems. However, organizing such events can pose unique challenges due to the intentionality required to meaningfully break down the barriers that separate long-independent disciplines. In this paper, we propose five key strategies for organizing and hosting interdisciplinary scientific events. The recommendations offered here apply both to small symposia aiming to contribute an interdisciplinary component to a larger event and to broad interdisciplinary conferences hosting hundreds or thousands of attendees.more » « less
- 
            Disasters are becoming more frequent as the global climate changes, and recovery efforts require the cooperation and collaboration of experts and community members across disciplines. The DRRM program, funded through the National Science Foundation (NSF) Research Traineeship (NRT), is an interdisciplinary graduate program that brings together faculty and graduate students from across the university to develop new, transdisciplinary ways of solving disaster-related issues. The core team includes faculty from business, engineering, education, science, and urban planning fields. The overall objective of the program is to create a community of practice amongst the graduate students and faculty to improve understanding and support proactive decision-making related to disasters and disaster management. The specific educational objectives of the program are (1) context mastery and community building, (2) transdisciplinary integration and professional development, and (3) transdisciplinary research. The program’s educational research and assessment activities include program development, trainee learning and development, programmatic educational research, and institutional transformation. The program is now in its fourth year of student enrollment. Core courses on interdisciplinary research methods in disaster resilience are in place, engaging students in domain-specific research related to natural hazards, resilience, and recovery, and in methods of interdisciplinary and transdisciplinary collaboration. In addition to courses, the program offers a range of professional development opportunities through seminars and workshops. Since the program’s inception, the core team has expanded both the numbers of faculty and students and the range of academic disciplines involved in the program, including individuals from additional science and engineering fields as well as those from natural resources and the social sciences. At the same time, the breadth of disciplines and the constraints of individual academic programs have posed substantial structural challenges in engaging students in the process of building interdisciplinary research identities and in building the infrastructure needed to sustain the program past the end of the grant. Our poster and paper will identify major program accomplishments, but also draw on interviews with students to examine the structural challenges and potential solution paths associated with a program of this breadth. Critical opportunities for sustainability and engagement have emerged through integration with a larger university-level center as well as through increased flexibility in program requirements and additional mechanisms for student and faculty collaboration.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    