Algorithmic decision-making systems are increasingly used throughout the public and private sectors to make important decisions or assist humans in making these decisions with real social consequences. While there has been substantial research in recent years to build fair decision-making algorithms, there has been less research seeking to understand the factors that affect people's perceptions of fairness in these systems, which we argue is also important for their broader acceptance. In this research, we conduct an online experiment to better understand perceptions of fairness, focusing on three sets of factors: algorithm outcomes, algorithm development and deployment procedures, and individual differences. We find that people rate the algorithm as more fair when the algorithm predicts in their favor, even surpassing the negative effects of describing algorithms that are very biased against particular demographic groups. We find that this effect is moderated by several variables, including participants' education level, gender, and several aspects of the development procedure. Our findings suggest that systems that evaluate algorithmic fairness through users' feedback must consider the possibility of "outcome favorability" bias.
more »
« less
Analyzing the impact of missing values and selection bias on fairness
Abstract Algorithmic decision making is becoming more prevalent, increasingly impacting people’s daily lives. Recently, discussions have been emerging about the fairness of decisions made by machines. Researchers have proposed different approaches for improving the fairness of these algorithms. While these approaches can help machines make fairer decisions, they have been developed and validated on fairly clean data sets. Unfortunately, most real-world data have complexities that make them more dirty . This work considers two of these complexities by analyzing the impact of two real-world data issues on fairness—missing values and selection bias—for categorical data. After formulating this problem and showing its existence, we propose fixing algorithms for data sets containing missing values and/or selection bias that use different forms of reweighting and resampling based upon the missing value generation process. We conduct an extensive empirical evaluation on both real-world and synthetic data using various fairness metrics, and demonstrate how different missing values generated from different mechanisms and selection bias impact prediction fairness, even when prediction accuracy remains fairly constant.
more »
« less
- PAR ID:
- 10280383
- Date Published:
- Journal Name:
- International Journal of Data Science and Analytics
- ISSN:
- 2364-415X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate the fairness concerns of training a machine learning model using data with missing values. Even though there are a number of fairness intervention methods in the literature, most of them require a complete training set as input. In practice, data can have missing values, and data missing patterns can depend on group attributes (e.g. gender or race). Simply applying off-the-shelf fair learning algorithms to an imputed dataset may lead to an unfair model. In this paper, we first theoretically analyze different sources of discrimination risks when training with an imputed dataset. Then, we propose an integrated approach based on decision trees that does not require a separate process of imputation and learning. Instead, we train a tree with missing incorporated as attribute (MIA), which does not require explicit imputation, and we optimize a fairness-regularized objective function. We demonstrate that our approach outperforms existing fairness intervention methods applied to an imputed dataset, through several experiments on real-world datasets.more » « less
-
null (Ed.)Recently there has been a growing interest in fairness-aware recommender systems including fairness in providing consistent performance across different users or groups of users. A recommender system could be considered unfair if the recommendations do not fairly represent the tastes of a certain group of users while other groups receive recommendations that are consistent with their preferences. In this paper, we use a metric called miscalibration for measuring how a recommendation algorithm is responsive to users’ true preferences and we consider how various algorithms may result in different degrees of miscalibration for different users. In particular, we conjecture that popularity bias which is a well-known phenomenon in recommendation is one important factor leading to miscalibration in recommendation. Our experimental results using two real-world datasets show that there is a connection between how different user groups are affected by algorithmic popularity bias and their level of interest in popular items. Moreover, we show that the more a group is affected by the algorithmic popularity bias, the more their recommendations are miscalibrated.more » « less
-
Link prediction has been widely applied in social network analysis. Despite its importance, link prediction algorithms can be biased by disfavoring the links between individuals in particular demographic groups. In this paper, we study one particular type of bias, namely, the bias in predicting inter-group links (i.e., links across different demographic groups). First, we formalize the definition of bias in link prediction by providing quantitative measurements of accuracy disparity, which measures the difference in prediction accuracy of inter-group and intra-group links. Second, we unveil the existence of bias in six existing state-of-the-art link prediction algorithms through extensive empirical studies over real world datasets. Third, we identify the imbalanced density across intra-group and inter-group links in training graphs as one of the underlying causes of bias in link prediction. Based on the identified cause, fourth, we design a pre-processing bias mitigation method named FairLP to modify the training graph, aiming to balance the distribution of intra-group and inter-group links while preserving the network characteristics of the graph. FairLP is model-agnostic and thus is compatible with any existing link prediction algorithm. Our experimental results on real-world social network graphs demonstrate that FairLP achieves better trade-off between fairness and prediction accuracy than the existing fairness-enhancing link prediction methods.more » « less
-
Although machine learning (ML) algorithms are widely used to make decisions about individuals in various domains, concerns have arisen that (1) these algorithms are vulnerable to strategic manipulation and "gaming the algorithm"; and (2) ML decisions may exhibit bias against certain social groups. Existing works have largely examined these as two separate issues, e.g., by focusing on building ML algorithms robust to strategic manipulation, or on training a fair ML algorithm. In this study, we set out to understand the impact they each have on the other, and examine how to characterize fair policies in the presence of strategic behavior. The strategic interaction between a decision maker and individuals (as decision takers) is modeled as a two-stage (Stackelberg) game; when designing an algorithm, the former anticipates the latter may manipulate their features in order to receive more favorable decisions. We analytically characterize the equilibrium strategies of both, and examine how the algorithms and their resulting fairness properties are affected when the decision maker is strategic (anticipates manipulation), as well as the impact of fairness interventions on equilibrium strategies. In particular, we identify conditions under which anticipation of strategic behavior may mitigate/exacerbate unfairness, and conditions under which fairness interventions can serve as (dis)incentives for strategic manipulation.more » « less