Message passing is a fundamental technique for performing calculations on networks and graphs with applications in physics, computer science, statistics, and machine learning, including Bayesian inference, spin models, satisfiability, graph partitioning, network epidemiology, and the calculation of matrix eigenvalues. Despite its wide use, however, it has long been recognized that the method has a fundamental flaw: It works poorly on networks that contain short loops. Loops introduce correlations that can cause the method to give inaccurate answers or to fail completely in the worst cases. Unfortunately, most real-world networks contain many short loops, which limits the usefulness of the message-passing approach. In this paper we demonstrate how to rectify this shortcoming and create message-passing methods that work on any network. We give 2 example applications, one to the percolation properties of networks and the other to the calculation of the spectra of sparse matrices.
more »
« less
Belief propagation for networks with loops
Belief propagation is a widely used message passing method for the solution of probabilistic models on networks such as epidemic models, spin models, and Bayesian graphical models, but it suffers from the serious shortcoming that it works poorly in the common case of networks that contain short loops. Here, we provide a solution to this long-standing problem, deriving a belief propagation method that allows for fast calculation of probability distributions in systems with short loops, potentially with high density, as well as giving expressions for the entropy and partition function, which are notoriously difficult quantities to compute. Using the Ising model as an example, we show that our approach gives excellent results on both real and synthetic networks, improving substantially on standard message passing methods. We also discuss potential applications of our method to a variety of other problems.
more »
« less
- PAR ID:
- 10280418
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 7
- Issue:
- 17
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- eabf1211
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Probabilistic graphical models provide a powerful tool to describe complex statistical structure, with many real-world applications in science and engineering from controlling robotic arms to understanding neuronal computations. A major challenge for these graphical models is that inferences such as marginalization are intractable for general graphs. These inferences are often approximated by a distributed message-passing algorithm such as Belief Propagation, which does not always perform well on graphs with cycles, nor can it always be easily specified for complex continuous probability distributions. Such difficulties arise frequently in expressive graphical models that include intractable higher-order interactions. In this paper we define the Recurrent Factor Graph Neural Network (RF-GNN) to achieve fast approximate inference on graphical models that involve many-variable interactions. Experimental results on several families of graphical models demonstrate the out-of-distribution generalization capability of our method to different sized graphs, and indicate the domain in which our method outperforms Belief Propagation (BP). Moreover, we test the RF-GNN on a real-world Low-Density Parity-Check dataset as a benchmark along with other baseline models including BP variants and other GNN methods. Overall we find that RF-GNNs outperform other methods under high noise levels.more » « less
-
Message passing neural networks have shown a lot of success on graph-structured data. However, there are many instances where message passing can lead to over-smoothing or fail when neighboring nodes belong to different classes. In this work, we introduce a simple yet general framework for improving learning in message passing neural networks. Our approach essentially upsamples edges in the original graph by adding “slow nodes” at each edge that can mediate com- munication between a source and a target node. Our method only modifies the input graph, making it plug-and-play and easy to use with existing models. To understand the benefits of slowing down message passing, we provide theoretical and empirical analyses. We report results on several supervised and self-supervised benchmarks, and show improvements across the board, notably in heterophilic conditions where adjacent nodes are more likely to have different labels. Finally, we show how our approach can be used to generate augmentations for self-supervised learning, where slow nodes are randomly introduced into different edges in the graph to generate multi-scale views with variable path lengths.more » « less
-
Networks and network computations have become a primary mathematical tool for analyzing the structure of many kinds of complex systems, ranging from the Internet and transportation networks to biochemical interactions and social networks. A common task in network analysis is the calculation of quantities that reside on the nodes of a network, such as centrality measures, probabilities or model states. In this perspective article we discuss message passing methods, a family of techniques for performing such calculations, based on the propagation of information between the nodes of a network. We introduce the message passing approach with a series of examples, give some illustrative applications and results and discuss the deep connections between message passing and phase transitions in networks. We also point out some limitations of the message passing approach and describe some recently introduced methods that address these limitations.more » « less
-
The recursive projection-aggregation (RPA) decoding algorithm for Reed-Muller (RM) codes was recently introduced by Ye and Abbe. We show that the RPA algorithm is closely related to (weighted) belief-propagation (BP) decoding by interpreting it as a message-passing algorithm on a factor graph with redundant code constraints. We use this observation to introduce a novel decoder tailored to high-rate RM codes. The new algorithm relies on puncturing rather than projections and is called recursive puncturing-aggregation (RXA). We also investigate collapsed (i.e., non-recursive) versions of RPA and RXA and show some examples where they achieve similar performance with lower decoding complexity.more » « less
An official website of the United States government

