skip to main content


Title: Year 1 of the ZTF high-cadence Galactic Plane Survey: Strategy, goals, and early results on new single-mode hot subdwarf B-star pulsators
We present the goals, strategy and first results of the high-cadence Galactic plane survey using the Zwicky Transient Facility (ZTF). The goal of the survey is to unveil the Galactic population of short-period variable stars, including short period binaries and stellar pulsators with periods less than a few hours. Between June 2018 and January 2019, we observed 64 ZTF fields resulting in 2990 deg2 of high stellar density in ZTF-r band along the Galactic Plane. Each field was observed continuously for 1.5 to 6 hrs with a cadence of 40 sec. Most fields have between 200 and 400 observations obtained over 2-3 continuous nights. As part of this survey we extract a total of ≈230 million individual objects with at least 80 epochs obtained during the high-cadence Galactic Plane survey reaching an average depth of ZTF-r ≈20.5 mag. For four selected fields with 2 million to 10 million individual objects per field we calculate different variability statistics and find that ≈1-2% of the objects are astrophysically variable over the observed period. We present a progress report on recent discoveries, including a new class of compact pulsators, the first members of a new class of Roche Lobe filling hot subdwarf binaries as well as new ultracompact double white dwarfs and flaring stars. Finally we present a sample of 12 new single-mode hot subdwarf B-star pulsators with pulsation amplitudes between ZTF-r = 20-76 mmag and pulsation periods between P = 5.8-16 min with a strong cluster of systems with periods ≈ 6 min. All of the data have now been released in either ZTF Data Release 3 or data release 4.  more » « less
Award ID(s):
1440341 2034437
NSF-PAR ID:
10280428
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Blue large amplitude pulsators (BLAPs) are hot, subluminous stars undergoing rapid variability with periods of under 60 min. They have been linked with the early stages of pre-white dwarfs and hot subdwarfs. They are a rare class of variable star due to their evolutionary history within interacting binary systems and the short time-scales relative to their lifetime in which they are pulsationally unstable. All currently known BLAPs are relatively faint (15–19 mag) and are located in the Galactic plane. These stars have intrinsically blue colours but the large interstellar extinction in the Galactic plane prevents them from swift identification using colour-based selection criteria. In this paper, we correct the Gaia G-band apparent magnitude and GBP − GRP colours of 89.6 million sources brighter than 19 mag in the Galactic plane with good quality photometry combined with supplementary all-sky data totalling 162.3 million sources. Selecting sources with colours consistent with the known population of BLAPs and performing a cross-match with the Zwicky Transient Facility (ZTF) DR3, we identify 98 short period candidate variables. Manual inspection of the period-folded light curves reveals 22 candidate BLAPs. Of these targets, 6 are consistent with the observed periods and light curves of the known BLAPs, 10 are within the theoretical period range of BLAPs, and 6 are candidate high-gravity BLAPs. We present follow-up spectra of 21 of these candidate sources and propose to classify one of them as a BLAP, and tentatively assign an additional eight of them as BLAPs for future population studies.

     
    more » « less
  2. Context. The TESS satellite was launched in 2018 to perform high-precision photometry from space over almost the whole sky in a search for exoplanets orbiting bright stars. This instrument has opened new opportunities to study variable hot subdwarfs, white dwarfs, and related compact objects. Targets of interest include white dwarf and hot subdwarf pulsators, both carrying high potential for asteroseismology. Aims. We present the discovery and detailed asteroseismic analysis of a new g -mode hot B subdwarf (sdB) pulsator, EC 21494−7018 (TIC 278659026), monitored in TESS first sector using 120-s cadence. Methods. The TESS light curve was analyzed with standard prewhitening techniques, followed by forward modeling using our latest generation of sdB models developed for asteroseismic investigations. By simultaneously best-matching all the observed frequencies with those computed from models, we identified the pulsation modes detected and, more importantly, we determined the global parameters and structural configuration of the star. Results. The light curve analysis reveals that EC 21494−7018 is a sdB pulsator counting up to 20 frequencies associated with independent g -modes. The seismic analysis singles out an optimal model solution in full agreement with independent measurements provided by spectroscopy (atmospheric parameters derived from model atmospheres) and astrometry (distance evaluated from Gaia DR2 trigonometric parallax). Several key parameters of the star are derived. Its mass (0.391 ± 0.009  M ⊙ ) is significantly lower than the typical mass of sdB stars and suggests that its progenitor has not undergone the He-core flash; therefore this progenitor could originate from a massive (≳2  M ⊙ ) red giant, which is an alternative channel for the formation of sdBs. Other derived parameters include the H-rich envelope mass (0.0037 ± 0.0010  M ⊙ ), radius (0.1694 ± 0.0081  R ⊙ ), and luminosity (8.2 ± 1.1  L ⊙ ). The optimal model fit has a double-layered He+H composition profile, which we interpret as an incomplete but ongoing process of gravitational settling of helium at the bottom of a thick H-rich envelope. Moreover, the derived properties of the core indicate that EC 21494−7018 has burnt ∼43% (in mass) of its central helium and possesses a relatively large mixed core ( M core  = 0.198 ± 0.010  M ⊙ ), in line with trends already uncovered from other g-mode sdB pulsators analyzed with asteroseismology. Finally, we obtain for the first time an estimate of the amount of oxygen (in mass; X (O) core = 0.16 +0.13 −0.05 ) produced at this stage of evolution by an helium-burning core. This result, along with the core-size estimate, is an interesting constraint that may help to narrow down the still uncertain 12 C( α ,  γ ) 16 O nuclear reaction rate. 
    more » « less
  3. ABSTRACT We characterize an all-sky catalogue of ∼8400 δ Scuti variables in ASAS-SN, which includes ∼3300 new discoveries. Using distances from Gaia DR2, we derive period–luminosity relationships for both the fundamental mode and overtone pulsators in the WJK, V, Gaia DR2 G, J, H, Ks, and W1 bands. We find that the overtone pulsators have a dominant overtone mode, with many sources pulsating in the second overtone or higher order modes. The fundamental mode pulsators have metallicity-dependent periods, with log10(P) ∼ −1.1 for $\rm [Fe/H]\lt -0.3$ and log10(P) ∼ −0.9 for $\rm [Fe/H]\gt 0$, which leads to a period-dependent scale height. Stars with $P\gt 0.100\, \rm d$ are predominantly located close to the Galactic disc ($\rm |\mathit{ Z}|\lt 0.5\, kpc$). The median period at a scale height of $Z\sim 0\, \rm kpc$ also increases with the Galactocentric radius R, from log10(P) ∼ −0.94 for sources with $R\gt 9\, \rm kpc$ to log10(P) ∼ −0.85 for sources with $R\lt 7\, \rm kpc$, which is indicative of a radial metallicity gradient. To illustrate potential applications of this all-sky catalogue, we obtained 30 min cadence, image subtraction TESS light curves for a sample of 10 fundamental mode and 10 overtone δ Scuti stars discovered by ASAS-SN. From this sample, we identified two new δ Scuti eclipsing binaries, ASASSN-V J071855.62−434247.3 and ASASSN-V J170344.20−615941.2 with short orbital periods of Porb = 2.6096 and 2.5347 d, respectively. 
    more » « less
  4. ABSTRACT

    Blue Large-Amplitude Pulsators (BLAPs) are a relatively new class of blue variable stars showing periodic variations in their light curves with periods shorter than a few tens of minutes and amplitudes of more than 10 per cent. We report nine blue variable stars identified in the OmegaWhite survey conducted using ESO’s VST, which shows a periodic modulation in the range 7–37 min and an amplitude in the range 0.11–0.28 mag. We have obtained a series of followup photometric and spectroscopic observations made primarily using SALT and telescopes at SAAO. We find four stars which we identify as BLAPs, one of which was previously known. One star, OW  J0820–3301, appears to be a member of the V361 Hya class of pulsating stars and is spatially close to an extended nebula. One further star, OW J1819–2729, has characteristics similar to the sdAV pulsators. In contrast, OW J0815–3421 is a binary star containing an sdB and a white dwarf with an orbital period of 73.7 min, making it only one of six white dwarf-sdB binaries with an orbital period shorter than 80 min. Finally, high cadence photometry of four of the candidate BLAPs show features that we compare with notch-like features seen in the much longer period Cepheid pulsators.

     
    more » « less
  5. ABSTRACT

    We conduct a systematic search for periodic variables in the hot subdwarf catalogue using data from the Zwicky Transient Facility. We present the classification of 67 HW Vir binaries, 496 reflection effect, pulsation or rotation sinusoids, 11 eclipsing signals, and 4 ellipsoidally modulated binaries. Of these, 486 are new discoveries that have not been previously published including a new mass-transferring hot subdwarf binary candidate. These sources were determined by applying the Lomb–Scargle and box least squares periodograms along with manual inspection. We calculated variability statistics on all periodic sources, and compared our results to traditional methods of determining astrophysical variability. We find that ≈60 per cent of variable targets, mostly sinusoidal variability, would have been missed using a traditional varindex cut. Most HW Virs, eclipsing systems, and all ellipsoidal variables were recovered with a varindex >0.02. We also find a significant reddening effect, with some variable hot subdwarfs meshing with the main-sequence stripe in the Hertzsprung–Russell diagram. Examining the positions of the variable stars in Galactic coordinates, we discover a higher proportion of variable stars within |b| < 25° of the Galactic plane, suggesting that the Galactic plane may be fertile grounds for future discoveries if photometric surveys can effectively process the clustered field.

     
    more » « less