Abstract Due to the mixed distribution of buildings and vegetation, wildland-urban interface (WUI) areas are characterized by complex fuel distributions and geographical environments. The behavior of wildfires occurring in the WUI often leads to severe hazards and significant damage to man-made structures. Therefore, WUI areas warrant more attention during the wildfire season. Due to the ever-changing dynamic nature of California’s population and housing, the update frequency and resolution of WUI maps that are currently used can no longer meet the needs and challenges of wildfire management and resource allocation for suppression and mitigation efforts. Recent developments in remote sensing technology and data analysis algorithms pose new opportunities for improving WUI mapping methods. WUI areas in California were directly mapped using building footprints extracted from remote sensing data by Microsoft along with the fuel vegetation cover from the LANDFIRE dataset in this study. To accommodate the new type of datasets, we developed a threshold criteria for mapping WUI based on statistical analysis, as opposed to using more ad-hoc criteria as used in previous mapping approaches. This method removes the reliance on census data in WUI mapping, and does not require the calculation of housing density. Moreover, this approach designates the adjacent areas of each building with large and dense parcels of vegetation as WUI, which can not only refine the scope and resolution of the WUI areas to individual buildings, but also avoids zoning issues and uncertainties in housing density calculation. Besides, the new method has the capability of updating the WUI map in real-time according to the operational needs. Therefore, this method is suitable for local governments to map local WUI areas, as well as formulating detailed wildfire emergency plans, evacuation routes, and management measures.
more »
« less
Examining the existing definitions of wildland‐urban interface for California
Abstract Past studies reported a drastic growth in the wildland–urban interface (WUI), the location where man‐made structures meet or overlap wildland vegetation. Fighting fire is difficult in the WUI due to the combination of wildland and structural fuels, and therefore, WUI areas are characterized by frequent damage and loss of structures from wildfires. Recent wildland fire policy has targeted fire prevention, evacuation planning, fuel treatment, and home hardening in WUI areas. Therefore, it is important to understand the occurrence of wildfire events relative to the location of the WUI. In this work, we have reported the occurrences of wildfires with respect to the WUI and quantified how much of the WUI is on complex topography in California, which intensifies fire behavior and complicates fire suppression. We have additionally analyzed the relative importance of WUI‐related parameters, such as housing density, vegetation density, and distance to wildfires, as well as topographic factors, such as slope, elevation, aspect, and surface roughness, on the occurrence of large and small wildfires and the burned area of large wildfires near the WUI. We found that a very small percentage of wildfire ignition points and large wildfire‐burned areas (>400 ha or 1000 acres) were located in the WUI areas. A small percentage of large wildfires were encountered in WUI (3%), and the WUI area accounted for only 4% of the area burned, which increased to 5% and 56%, respectively, outside WUI (5‐km buffer from WUI). Similarly, 66% of fires ignited outside WUI, whereas only 3.6% ignited within WUI. Results from this study have implications for fuel management and infrastructure hardening, as well as for fire suppression and community response.
more »
« less
- PAR ID:
- 10388244
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecosphere
- Volume:
- 13
- Issue:
- 12
- ISSN:
- 2150-8925
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)With climate-driven increases in wildfires in the western U.S., it is imperative to understand how the risk to homes is also changing nationwide. Here, we quantify the number of homes threatened, suppression costs, and ignition sources for 1.6 million wildfires in the United States (U.S.; 1992–2015). Human-caused wildfires accounted for 97% of the residential homes threatened (within 1 km of a wildfire) and nearly a third of suppression costs. This study illustrates how the wildland-urban interface (WUI), which accounts for only a small portion of U.S. land area (10%), acts as a major source of fires, almost exclusively human-started. Cumulatively (1992–2015), just over one million homes were within human-caused wildfire perimeters in the WUI, where communities are built within flammable vegetation. An additional 58.8 million homes were within one kilometer across the 24-year record. On an annual basis in the WUI (1999–2014), an average of 2.5 million homes (2.2–2.8 million, 95% confidence interval) were threatened by human-started wildfires (within the perimeter and up to 1-km away). The number of residential homes in the WUI grew by 32 million from 1990–2015. The convergence of warmer, drier conditions and greater development into flammable landscapes is leaving many communities vulnerable to human-caused wildfires. These areas are a high priority for policy and management efforts that aim to reduce human ignitions and promote resilience to future fires, particularly as the number of residential homes in the WUI grew across this record and are expected to continue to grow in coming years.more » « less
-
Fuel break effectiveness in wildland-urban interface (WUI) is not well understood during downslope wind-driven fires even though various fuel treatments are conducted across the western United States. The aim of this paper is to examine the efficacy of WUI fuel breaks under the influence of strong winds and dry fuels, using the 2018 Camp Fire as a case study. The operational fire growth model Prometheus was used to show: (1) downstream impacts of 200 m and 400 m wide WUI fuel breaks on fire behavior and evacuation time gain; (2) how the downstream fire behavior was affected by the width and fuel conditions of the WUI fuel breaks; and (3) the impacts of background wind speeds on the efficacy of WUI fuel breaks. Our results indicate that WUI fuel breaks may slow wildfire spread rates by dispersing the primary advancing fire front into multiple fronts of lower intensity on the downstream edge of the fuel break. However, fuel break width mattered. We found that the lateral fire spread and burned area were reduced downstream of the 400 m wide WUI fuel break more effectively than the 200 m fuel break. Further sensitivity tests showed that wind speed at the time of ignition influenced fire behavior and efficacy of management interventions.more » « less
-
Wildfire activity has surged in North America’s temperate grassland biome. Like many biomes, this system has undergone drastic land-use change over the last century; however, how various land-use types contribute to wildfire patterns in grassland systems is unclear. We determine if certain land-use types have a greater propensity for large wildfire in the U.S. Great Plains and how this changes given the percentage of land covered by a given land-use type. Almost 90% of the area burned in the Great Plains occurred in woody and grassland land-use types. Although grassland comprised the greatest area burned by large wildfires, woody vegetation burned disproportionately more than any other land-use type in the Great Plains. Wildfires were more likely to occur when woody vegetation composed greater than 20% of the landscape. Wildfires were unlikely to occur in croplands, pasture/hay fields, and developed areas. Although these patterns varied by region, wildfire was most likely to occur in woody vegetation and/or grassland in 13 of 14 ecoregions we assessed. Because woody vegetation is more conducive to extreme wildfire behaviour than other land-use types in the Great Plains, woody encroachment could pose a large risk for increasing wildfire exposure. Regional planning could leverage differential wildfire activity across land-uses to devise targeted approaches that decrease human exposure in a system prone to fire.more » « less
-
null (Ed.)Wildfire activity has surged in North America’s temperate grassland biome. Like many biomes, this system has undergone drastic land-use change over the last century; however, how various land-use types contribute to wildfire patterns in grassland systems is unclear. We determine if certain land-use types have a greater propensity for large wildfire in the U.S. Great Plains and how this changes given the percentage of land covered by a given land-use type. Almost 90% of the area burned in the Great Plains occurred in woody and grassland land-use types. Although grassland comprised the greatest area burned by large wildfires, woody vegetation burned disproportionately more than any other land-use type in the Great Plains. Wildfires were more likely to occur when woody vegetation composed greater than 20% of the landscape. Wildfires were unlikely to occur in croplands, pasture/hay fields, and developed areas. Although these patterns varied by region, wildfire was most likely to occur in woody vegetation and/or grassland in 13 of 14 ecoregions we assessed. Because woody vegetation is more conducive to extreme wildfire behaviour than other land-use types in the Great Plains, woody encroachment could pose a large risk for increasing wildfire exposure. Regional planning could leverage differential wildfire activity across land-uses to devise targeted approaches that decrease human exposure in a system prone to fire.more » « less