The goal of this paper was to establish a metric, which we refer to as the resilience parameter, to evaluate the ability of a material to retain tensile strength after damage recovery for shape memory polymer (SMP) systems. In this work, three SMP blends created for the additive manufacturing process of fused filament fabrication (FFF) were characterized. The three polymer systems examined in this study were 50/50 by weight binary blends of the following constituents: (1) polylactic acid (PLA) and maleated styrene-ethylene-butylene-styrene (SEBS-g-MA); (2) acrylonitrile butadiene styrene (ABS) and SEBS-g-MA); and (3) PLA and thermoplastic polyurethane (TPU). The blends were melt compounded and specimens were fabricated by way of FFF and injection molding (IM). The effect of shape memory recovery from varying amounts of initial tensile deformation on the mechanical properties of each blend, in both additively manufactured and injection molded forms, was characterized in terms of the change in tensile strength vs. the amount of deformation the specimens recovered from. The findings of this research indicated a sensitivity to manufacturing method for the PLA/TPU blend, which showed an increase in strength with increasing deformation recovery for the injection molded samples, which indicates this blend had excellent resilience. The ABS/SEBS blend showed no change in strength with the amount of deformation recovery, indicating that this blend had good resilience. The PLA/SEBS showed a decrease in strength with an increasing amount of initial deformation, indicating that this blend had poor resilience. The premise behind the development of this parameter is to promote and aid the notion that increased use of shape memory and self-healing polymers could be a strategy for mitigating plastic waste in the environment.
more »
« less
Bypassing energy barriers in fiber-polymer torrefaction
The amount of waste generation has been increasing with a significant amount being landfilled. These non-recyclable wastes contain large number of fiber and plastic wastes which can be treated with thermal processes to turn them into energy sources since they have high calorific values, are abundant and usually tipping fees are paid to handle them. This paper studied the torrefaction of non-recyclable paper (fiber) wastes, mixed plastic wastes (MPW) and their blends at different ratios in the temperature range of 250–400°C through thermogravimetric analysis (TGA). The solid residues after the experiments were analyzed by nuclear magnetic resonance (NMR) spectroscopy. Significant synergy between fiber and MPW were observed at the range 250–300°C, showing both increase in the reaction rate as well as the overall mass loss. At 250°C, the maximum mass loss rate was more than two times higher and the mass loss at the end of the experiments were also much higher compared to the expected results. In addition, synergy was weakened with an increase of temperature, disappearing at 400°C. The existence of such interactions between fiber and plastic wastes indicates that the natural energy barriers during the individual torrefaction in paper waste or plastic waste could be bypassed, and the torrefaction of fiber and plastic blend can be achieved at lower temperatures and/or shorter residence times. The MPW and fiber wastes were also compounded by extrusion (to produce pellets) at 220°C with different blend ratios. The fiber-MPW pellets from extrusion were characterized by IR spectroscopy, rheology, thermal analysis and flexural properties and showed significant chemical changes from the non-extruded blends at the same ratios. From IR characterization, it was found that there was significant increase in hydroxyl (OH) group on account of the carbonyl (C O) and etheric (C-O-C) groups. The interaction between paper and MPW can be attributed to the plastic polymers acting as a hydrogen donor during the reactive extrusion process. Synergistic effects were also found from mechanical and rheological properties.
more »
« less
- Award ID(s):
- 1827364
- PAR ID:
- 10280504
- Date Published:
- Journal Name:
- Frontiers in energy research
- Volume:
- 9
- ISSN:
- 2296-598X
- Page Range / eLocation ID:
- 643371
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Polymer blend compatibilization is an attractive solution for mechanical recycling of mixed plastic waste because it can result in tough blends. In this work, hydroxy-telechelic polyethylene (HOPEOH) reactive additives were used to compatibilize blends of polyethylene terephthalate (PET) and linear low-density polyethylene (LLDPE). HOPEOH additives were synthesized with molar masses of 1–20 kg/mol by ring-opening metathesis polymerization of cyclooctene followed by catalytic hydrogenation. Melt-compounded blends containing 0.5 wt % HOPEOH displayed reduced dispersed phase LLDPE particle sizes with ductilities comparable to virgin PET and almost seven times greater than neat blends, regardless of additive molar mass. In contrast, analogous blends containing monohydroxy PE additives of comparable molar masses did not result in compatibilization even at 2 wt % loading. The results strongly suggest that both hydroxy ends of HOPEOH undergo transesterification reactions during melt mixing with PET to form predominantly PET–PE–PET triblock copolymers at the interface of the dispersed and matrix phases. We hypothesize that the triblock copolymer compatibilizers localized at the interface form trapped entanglements of the PE midblocks with nearby LLDPE homopolymer chains by a hook-and-clasp mechanism. Finally, HOPEOH compounds were able to efficiently compatibilize blends derived solely from postconsumer PET and PE bottles and film, suggesting their industrial applicability.more » « less
-
This study evaluated the mechanical, thermal, water soak, and rheological properties of mixed plastic waste (MPW) in combination with fibers derived from residual hops bines and coupling agents or dicumyl peroxide (DCP) to form composite materials. Hop bines were pulped to afford individual hop fibers (HF) in 45% yield with 78% carbohydrate content. The MPW comprised mainly of PET, paper, PE and PEVA. Tensile moduli and strength of the formulations ranged between 1.1 and 2.0 GPa and 11 and 14 MPa, respectively. The addition of hops fiber (HF) improved the tensile modulus of the formulations by 40%. Tensile strength was improved by the addition of coupling agents by 11% and this was supported by determining the adhesion factor by dynamic mechanical analysis. However, the addition of DCP resulted in a reduction of tensile properties. The melt properties of the formulations showed shear thinning behavior and followed the power-law model. The water absorption tests for most of the MPW formulations gave an 11% weight gain over 83 d except for the DCP treated composites (14–16%). The fabricated composites can be used in non-structural applications such as (garden trim, siding, pavers, etc.).more » « less
-
Abstract The hydrogenolysis of polymers is emerging as a promising approach to deconstruct plastic waste into valuable chemicals. Yet, the complexity of plastic waste, including multilayer packaging, is a significant barrier to handling realistic waste streams. Herein, we reveal fundamental insights into a new chemical route for transforming a previously unaddressed fraction of plastic waste – poly(ethylene‐co‐vinyl alcohol) (EVOH) and related polymer blends – into alkane products. We report that Ru/ZrO2is active for the concurrent hydrogenolysis, hydrogenation, and hydrodeoxygenation of EVOH and its thermal degradation products into alkanes (C1−C35) and water. Detailed reaction data, product analysis, and catalyst characterization reveal that the in‐situ thermal degradation of EVOH forms aromatic intermediates that are detrimental to catalytic activity. Increased hydrogen pressure promotes hydrogenation of these aromatics, preventing catalyst deactivation and improving alkane product yields. Calculated apparent rates of C−C scission reveal that the hydrogenolysis of EVOH is slower than low‐density polyethylene. We apply these findings to achieve hydrogenolysis of EVOH/polyethylene blends and elucidate the sensitivity of hydrogenolysis catalysts to such blends. Overall, we demonstrate progress towards efficient catalytic processes for the hydroconversion of waste multilayer film plastic packaging into valuable products.more » « less
-
Abstract Creating a sustainable economy for plastics demands the exploration of new strategies for efficient management of mixed plastic waste. The inherent incompatibility of different plastics poses a major challenge in plastic mechanical recycling, resulting in phase‐separated materials with inferior mechanical properties. Here, this study presents a robust and efficient dynamic crosslinking chemistry that effectively compatibilizes mixed plastics. Composed of aromatic sulfonyl azides, the dynamic crosslinker shows high thermal stability and generates singlet nitrene species in situ during solvent‐free melt‐extrusion, effectively promoting C─H insertion across diverse plastics. This new method demonstrates successful compatibilization of binary polymer blends and model mixed plastics, enhancing mechanical performance and improving phase morphology. It holds promise for managing mixed plastic waste, supporting a more sustainable lifecycle for plastics.more » « less
An official website of the United States government

