skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simple finite elements and multigrid for efficient mass-consistent wind downscaling in a coupled fire-atmosphere model
We present a simple finite element formulation of mass-consistent approximation, and a fast multigrid iterative method with adaptive semicoarsening, which maintains the convergence of the iterations over a range of grids and penalty coefficients. The method is designed to run in each time step of WRF-SFIRE and replace the interpolation from the atmospheric mesh to the fire mesh by a diagnostic model of the air flow over a fine-scale terrain.  more » « less
Award ID(s):
1664175
PAR ID:
10280547
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Blaheta, R.; Sysala, S.; Lukas, D.; Kruis, J.; Rozloznik, M.; Tichy, P.
Date Published:
Journal Name:
SNA'21: Seminar on Numerical Analysis Modelling and Simulation of Challenging Engineering Problems
Page Range / eLocation ID:
51 - 54
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Elementary linear circuit analysis is a core competency for electrical and many other engineers. Two of the standard approaches to systematic analysis of linear circuits are nodal and mesh analysis, the latter being limited to planar circuits. Nodal and mesh analysis are related by duality and should therefore be fully symmetrical with each other. Here, the usual textbook approach to mesh analysis is argued to be deficient in that it obscures this fundamental duality and symmetry, and may thereby impede the development of intuition and the understanding of the nature of “mesh currents.” In particular, the usual distinction between “inner” and “outer” meshes (if the latter is even recognized) is argued to be meaningless, as can be seen when drawing a planar circuit on the surface of a sphere. A generalized definition of a mesh is proposed that includes both inner and outer meshes on the same footing. Selection of a reference node in nodal analysis should be paralleled by the selection of any mesh to be the reference mesh in mesh analysis, which is always selected to be the outer mesh by default in the usual approach. All branch currents are shown to the difference of two mesh currents, and the zero of all mesh currents is now arbitrary just as it is for node voltages. Use of supermeshes is sometimes obviated by the new approach, and the analysis is sometimes simplified. This new approach has been used in two sections of a linear circuit analysis course in Fall 2019, and student survey data is presented to show preference for the new method over the usual textbook method. An interactive multiple-choice tutorial describing the new method has been integrated into a step-based tutoring system for linear circuit analysis. 
    more » « less
  2. Partial differential equations (PDEs) have become an essential tool for modeling complex physical systems. Such equations are typically solved numerically via mesh-based methods, such as finite element methods, with solutions over the spatial domain. However, obtaining these solutions are often prohibitively costly, limiting the feasibility of exploring parameters in PDEs. In this article, we propose an efficient emulator that simultaneously predicts the solutions over the spatial domain, with theoretical justification of its uncertainty quantification. The novelty of the proposed method lies in the incorporation of the mesh node coordinates into the statistical model. In particular, the proposed method segments the mesh nodes into multiple clusters via a Dirichlet process prior and fits Gaussian process models with the same hyperparameters in each of them. Most importantly, by revealing the underlying clustering structures, the proposed method can provide valuable insights into qualitative features of the resulting dynamics that can be used to guide further investigations. Real examples are demonstrated to show that our proposed method has smaller prediction errors than its main competitors, with competitive computation time, and identifies interesting clusters of mesh nodes that possess physical significance, such as satisfying boundary conditions. An R package for the proposed methodology is provided in an open repository. 
    more » « less
  3. An adaptive mesh refinement method for numerically solving optimal control problems is developed using Legendre-Gauss-Radau direct collocation. In regions of the solution where the desired accuracy tolerance has not been met, the mesh is refined by either increasing the degree of the approximating polynomial in a mesh interval or dividing a mesh interval into subintervals. In regions of the solution where the desired accuracy tolerance has been met, the mesh size may be reduced by either merging adjacent mesh intervals or decreasing the degree of the approximating polynomial in a mesh interval. Coupled with the mesh refinement method described in this paper is a newly developed relative error estimate that is based on the differences between solutions obtained from the collocation method and those obtained by solving initial-value and terminal-value problems in each mesh interval using an interpolated control obtained from the collocation method. Because the error estimate is based on explicit simulation, the solution obtained via collocation is in close agreement with the solution obtained via explicit simulation using the control on the final mesh, which ensures that the control is an accurate approximation of the true optimal control. The method is demonstrated on three examples from the open literature, and the results obtained show an improvement in final mesh size when compared against previously developed mesh refinement methods. 
    more » « less
  4. For control problems with control constraints, a local convergence rate is established for an hp-method based on collocation at the Radau quadrature points in each mesh interval of the discretization. If the continuous problem has a sufficiently smooth solution and the Hamiltonian satisfies a strong convexity condition, then the discrete problem possesses a local minimizer in a neighborhood of the continuous solution, and as either the number of collocation points or the number of mesh intervals increase, the discrete solution convergences to the continuous solution in the sup-norm. The convergence is exponentially fast with respect to the degree of the polynomials on each mesh interval, while the error is bounded by a polynomial in the mesh spacing. An advantage of the hp-scheme over global polynomials is that there is a convergence guarantee when the mesh is sufficiently small, while the convergence result for global polynomials requires that a norm of the linearized dynamics is sufficiently small. Numerical examples explore the convergence theory. 
    more » « less
  5. There are numerous large-scale applications requiring mesh adaptivity, e.g., computational fluid dynamics and weather prediction. Parallel processing is needed for simulations involving large-scale adaptive meshes. In this paper, we propose a parallel variational mesh quality improvement algorithm for use with distributed memory machines. Our method parallelizes the serial variational mesh quality improvement method by Huang and Kamenski. Their approach is based on the use of the Moving Mesh PDE method to adapt the mesh based on the minimization of an energy functional for mesh equidistribution and alignment. This leads to a system of ordinary differential equations (ODEs) to be solved which determine where to move the interior mesh nodes. An efficient solution is obtained by solving the ODEs on subregions of the mesh with overlapped communication and computation. Strong and weak scaling experiments on up to 128 cores for meshes with up to 160M elements demonstrate excellent results. 
    more » « less