Abstract Modular active cell robots (MACROs) is a design approach in which a large number of linear actuators and passive compliant joints are assembled to create an active structure with a repeating unit cell. Such a mesh-like robotic structure can be actuated to achieve large deformation and shape-change. In this two-part paper, we use finite element analysis (FEA) to model the deformation behavior of different MACRO mesh topologies and evaluate their passive and active mechanical characteristics. In Part I, we presented the passive stiffness characteristics of different MACRO meshes. In this Part II of the paper, we investigate the active strain characteristics of planar MACRO meshes. Using FEA, we quantify and compare the strains generated for the specific choice of MACRO mesh topology and further for the specific choice of actuators actuated in that particular mesh. We simulate a series of actuation modes that are based on the angular orientation of the actuators within the mesh and show that such actuation modes result in deformation that is independent of the size of the mesh. We also show that there exists a subset of such actuation modes that spans the range of deformation behavior. Finally, we compare the actuation effort required to actuate different MACRO meshes and show that the actuation effort is related to the nodal connectivity of the mesh.
more »
« less
Turning Mesh Analysis Inside Out
Elementary linear circuit analysis is a core competency for electrical and many other engineers. Two of the standard approaches to systematic analysis of linear circuits are nodal and mesh analysis, the latter being limited to planar circuits. Nodal and mesh analysis are related by duality and should therefore be fully symmetrical with each other. Here, the usual textbook approach to mesh analysis is argued to be deficient in that it obscures this fundamental duality and symmetry, and may thereby impede the development of intuition and the understanding of the nature of “mesh currents.” In particular, the usual distinction between “inner” and “outer” meshes (if the latter is even recognized) is argued to be meaningless, as can be seen when drawing a planar circuit on the surface of a sphere. A generalized definition of a mesh is proposed that includes both inner and outer meshes on the same footing. Selection of a reference node in nodal analysis should be paralleled by the selection of any mesh to be the reference mesh in mesh analysis, which is always selected to be the outer mesh by default in the usual approach. All branch currents are shown to the difference of two mesh currents, and the zero of all mesh currents is now arbitrary just as it is for node voltages. Use of supermeshes is sometimes obviated by the new approach, and the analysis is sometimes simplified. This new approach has been used in two sections of a linear circuit analysis course in Fall 2019, and student survey data is presented to show preference for the new method over the usual textbook method. An interactive multiple-choice tutorial describing the new method has been integrated into a step-based tutoring system for linear circuit analysis.
more »
« less
- Award ID(s):
- 1821628
- PAR ID:
- 10179929
- Date Published:
- Journal Name:
- American Society for Engineering Education Annual Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Linear circuit analysis is a complex topic in which students must use many principles to complete problems successfully, which may overload working memory and thereby impede learning. Introducing organizing principles may help students develop schemas that help reduce this burden and develop deeper conceptual understanding. The use of duality as such an organizing concept is explored in this work. To be effective, however, all the topics should be presented in a dual manner. Historically, definitions of series and parallel elements have been used that are not dual to each other, and mesh analysis has been performed in a way that is not fully dual to nodal analysis. This paper examines the research question of whether these key topics can be presented in a novel, fully dual fashion and whether students will accept and appreciate such a treatment. The revised approaches were implemented using lectures, online interactive tutorials, and step-based tutoring software exercises. Surveys using both quantitative and qualitative analysis were conducted over three semesters and showed positive reactions from 72-83% of students. These results can lead to development of a full set of instructional materials centered around duality to enable improved learning of circuit analysis.more » « less
-
Contribution: A new operational definition of series connections is given based on elements belonging to the same two meshes, which is properly dual to the usual definition of parallel elements being connected to the same two nodes. Furthermore, computer-based exercises have been developed and tested to teach students about such connections in gateway linear circuits courses, using color coding of nodes and meshes as a pedagogical device. Background: Series and parallel connections are a crucial but difficult concept. Existing textbooks give them limited attention, resulting in later difficulties learning circuit analysis. Research Questions: RQ1: Can an improved definition of series elements aid student understanding and student satisfaction? RQ2: Can a computer-based ``game'' lead to effective mastery and student satisfaction at a wide range of institutions, including minority-serving ones? Methodology: Standard and new definitions were elaborated in a multiple-choice tutorial. A game was developed focusing on identifying series and parallel connections, with color coding of both nodes and meshes. Student learning was assessed over eight years using pretest and posttest in 14 varied institutions. Student opinions were assessed using several types of surveys. Findings: Strong learning gains were observed every semester from built-in pretest and posttest, with average scores of 28% and 87%, respectively. Large improvements were observed at every institution including five minority-serving ones. The posttest score is increased by a statistically significant amount after introducing the new definition of series elements. Students preferred the new definition of series and recommended its use, and very strongly endorsed color coding.more » « less
-
Si, Hang; Shepherd, Kendrick M; Zhang, Yongjie Jessica (Ed.)Warping large volume meshes has applications in biomechanics, aerodynamics, image processing, and cardiology. However, warping large, real-world meshes is computationally expensive. Existing parallel implementations of mesh warping algorithms do not take advantage of shared-memory and one-sided communication features available in the MPI-3 standard. We describe our parallelization of the finite element-based mesh warping algorithm for tetrahedral meshes. Our implementation is portable across shared and distributed memory architectures, as it takes advantage of shared memory and one-sided communication to precompute neighbor lists in parallel. We then deform a mesh by solving a Poisson boundary value problem and the resulting linear system, which has multiple right-hand sides, in parallel. Our results demonstrate excellent efficiency and strong scalability on up to 32 cores on a single node. Furthermore, we show a 33.9% increase in speedup with 256 cores distributed uniformly across 64 nodes versus our largest single node speedup while observing sublinear speedups overall.more » « less
-
We explore an error‐bounded lossy compression approach for reducing scientific data associated with 2D/3D unstructured meshes. While existing lossy compressors offer a high compression ratio with bounded error for regular grid data, methodologies tailored for unstructured mesh data are lacking; for example, one can compress nodal data as 1D arrays, neglecting the spatial coherency of the mesh nodes. Inspired by the SZ compressor, which predicts and quantizes values in a multidimensional array, we dynamically reorganize nodal data into sequences. Each sequence starts with a seed cell; based on a predefined traversal order, the next cell is added to the sequence if the current cell can predict and quantize the nodal data in the next cell with the given error bound. As a result, one can efficiently compress the quantized nodal data in each sequence until all mesh nodes are traversed. This paper also introduces a suite of novel error metrics, namely continuous mean squared error (CMSE) and continuous peak signal‐to‐noise ratio (CPSNR), to assess compression results for unstructured mesh data. The continuous error metrics are defined by integrating the error function on all cells, providing objective statistics across nonuniformly distributed nodes/cells in the mesh. We evaluate our methods with several scientific simulations ranging from ocean‐climate models and computational fluid dynamics simulations with both traditional and continuous error metrics. We demonstrated superior compression ratios and quality than existing lossy compressors.more » « less
An official website of the United States government

