skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Convergence rate for a Radau hp collocation method applied to constrained optimal control
For control problems with control constraints, a local convergence rate is established for an hp-method based on collocation at the Radau quadrature points in each mesh interval of the discretization. If the continuous problem has a sufficiently smooth solution and the Hamiltonian satisfies a strong convexity condition, then the discrete problem possesses a local minimizer in a neighborhood of the continuous solution, and as either the number of collocation points or the number of mesh intervals increase, the discrete solution convergences to the continuous solution in the sup-norm. The convergence is exponentially fast with respect to the degree of the polynomials on each mesh interval, while the error is bounded by a polynomial in the mesh spacing. An advantage of the hp-scheme over global polynomials is that there is a convergence guarantee when the mesh is sufficiently small, while the convergence result for global polynomials requires that a norm of the linearized dynamics is sufficiently small. Numerical examples explore the convergence theory.  more » « less
Award ID(s):
1819002 1522629
NSF-PAR ID:
10093308
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Computational Optimization and Applications
ISSN:
0926-6003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A general-purpose C++ software program called CGPOPS is described for solving multiple-phase optimal control problems using adaptive direct orthogonal collocation methods. The software employs a Legendre-Gauss-Radau direct orthogonal collocation method to transcribe the continuous optimal control problem into a large sparse nonlinear programming problem (NLP). A class of hp mesh refinement methods are implemented that determine the number of mesh intervals and the degree of the approximating polynomial within each mesh interval to achieve a specified accuracy tolerance. The software is interfaced with the open source Newton NLP solver IPOPT. All derivatives required by the NLP solver are computed via central finite differencing, bicomplex-step derivative approximations, hyper-dual derivative approximations, or automatic differentiation. The key components of the software are described in detail, and the utility of the software is demonstrated on five optimal control problems of varying complexity. The software described in this article provides researchers a transitional platform to solve a wide variety of complex constrained optimal control problems. 
    more » « less
  2. A modified Legendre-Gauss-Radau collocation method is developed for solving optimal control problems whose solutions contain a nonsmooth optimal control. The method includes an additional variable that defines the location of nonsmoothness. In addition, collocation constraints are added at the end of a mesh interval that defines the location of nonsmoothness in the solution on each differential equation that is a function of control along with a control constraint at the endpoint of this same mesh interval. The transformed adjoint system for the modified Legendre-Gauss-Radau collocation method along with a relationship between the Lagrange multipliers of the nonlinear programming problem and a discrete approximation of the costate of the optimal control problem is then derived. Finally, it is shown via example that the new method provides an accurate approximation of the costate. 
    more » « less
  3. null (Ed.)
    A new method is developed for solving optimal control problems whose solutions are nonsmooth. The method developed in this paper employs a modified form of the Legendre–Gauss–Radau orthogonal direct collocation method. This modified Legendre–Gauss–Radau method adds two variables and two constraints at the end of a mesh interval when compared with a previously developed standard Legendre– Gauss–Radau collocation method. The two additional variables are the time at the interface between two mesh intervals and the control at the end of each mesh inter- val. The two additional constraints are a collocation condition for those differential equations that depend upon the control and an inequality constraint on the control at the endpoint of each mesh interval. The additional constraints modify the search space of the nonlinear programming problem such that an accurate approximation to the location of the nonsmoothness is obtained. The transformed adjoint system of the modified Legendre–Gauss–Radau method is then developed. Using this transformed adjoint system, a method is developed to transform the Lagrange multipliers of the nonlinear programming problem to the costate of the optimal control problem. Fur- thermore, it is shown that the costate estimate satisfies one of the Weierstrass–Erdmann optimality conditions. Finally, the method developed in this paper is demonstrated on an example whose solution is nonsmooth. 
    more » « less
  4. An adaptive mesh refinement method for solving optimal control problems is developed. The method employs orthogonal collocation at Legendre–Gauss–Radau points, and adjusts both the mesh size and the degree of the approximating polynomials in the refinement process. A previously derived convergence rate is used to guide the refinement process. The method brackets discontinuities and improves solution accuracy by checking for large increases in higher-order derivatives of the state. In regions between discontinuities, where the solution is smooth, the error in the approximation is reduced by increasing the degree of the approximating polynomial. On mesh intervals where the error tolerance has been met, mesh density may be reduced either by merging adjacent mesh intervals or lowering the degree of the approximating polynomial. Finally, the method is demonstrated on two examples from the open literature and its performance is compared against a previously developed adaptive method. 
    more » « less
  5. A Gauss collocation method is developed for solving optimal control problems with convex control constraints. The method has a local exponential convergence rate when the solution of the continuous problem is smooth and the Hamiltonian possesses a convexity property. 
    more » « less