skip to main content


Title: Modified Polynomial Chaos Expansion for Efficient Uncertainty Quantification in Biological Systems
Uncertainty quantification (UQ) is an important part of mathematical modeling and simulations, which quantifies the impact of parametric uncertainty on model predictions. This paper presents an efficient approach for polynomial chaos expansion (PCE) based UQ method in biological systems. For PCE, the key step is the stochastic Galerkin (SG) projection, which yields a family of deterministic models of PCE coefficients to describe the original stochastic system. When dealing with systems that involve nonpolynomial terms and many uncertainties, the SG-based PCE is computationally prohibitive because it often involves high-dimensional integrals. To address this, a generalized dimension reduction method (gDRM) is coupled with quadrature rules to convert a high-dimensional integral in the SG into a few lower dimensional ones that can be rapidly solved. The performance of the algorithm is validated with two examples describing the dynamic behavior of cells. Compared to other UQ techniques (e.g., nonintrusive PCE), the results show the potential of the algorithm to tackle UQ in more complicated biological systems.  more » « less
Award ID(s):
1728338 1727487
NSF-PAR ID:
10280793
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Applied Mechanics
Volume:
1
Issue:
3
ISSN:
2673-3161
Page Range / eLocation ID:
153 to 173
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    This paper presents an approach for efficient uncertainty analysis (UA) using an intrusive generalized polynomial chaos (gPC) expansion. The key step of the gPC‐based uncertainty quantification(UQ) is the stochastic Galerkin (SG) projection, which can convert a stochastic model into a set of coupled deterministic models. The SG projection generally yields a high‐dimensional integration problem with respect to the number of random variables used to describe the parametric uncertainties in a model. However, when the number of uncertainties is large and when the governing equation of the system is highly nonlinear, the SG approach‐based gPC can be challenging to derive explicit expressions for the gPC coefficients because of the low convergence in the SG projection. To tackle this challenge, we propose to use a bivariate dimension reduction method (BiDRM) in this work to approximate a high‐dimensional integral in SG projection with a few one‐ and two‐dimensional integrations. The efficiency of the proposed method is demonstrated with three different examples, including chemical reactions and cell signaling. As compared to other UA methods, such as the Monte Carlo simulations and nonintrusive stochastic collocation (SC), the proposed method shows its superior performance in terms of computational efficiency and UA accuracy.

     
    more » « less
  2. null (Ed.)
    Uncertainty is a common feature in first-principles models that are widely used in various engineering problems. Uncertainty quantification (UQ) has become an essential procedure to improve the accuracy and reliability of model predictions. Polynomial chaos expansion (PCE) has been used as an efficient approach for UQ by approximating uncertainty with orthogonal polynomial basis functions of standard distributions (e.g., normal) chosen from the Askey scheme. However, uncertainty in practice may not be represented well by standard distributions. In this case, the convergence rate and accuracy of the PCE-based UQ cannot be guaranteed. Further, when models involve non-polynomial forms, the PCE-based UQ can be computationally impractical in the presence of many parametric uncertainties. To address these issues, the Gram–Schmidt (GS) orthogonalization and generalized dimension reduction method (gDRM) are integrated with the PCE in this work to deal with many parametric uncertainties that follow arbitrary distributions. The performance of the proposed method is demonstrated with three benchmark cases including two chemical engineering problems in terms of UQ accuracy and computational efficiency by comparison with available algorithms (e.g., non-intrusive PCE). 
    more » « less
  3. Abstract

    Uncertainty quantification (UQ) in metal additive manufacturing (AM) has attracted tremendous interest in order to dramatically improve product reliability. Model-based UQ, which relies on the validity of a computational model, has been widely explored as a potential substitute for the time-consuming and expensive UQ solely based on experiments. However, its adoption in the practical AM process requires overcoming two main challenges: (1) the inaccurate knowledge of uncertainty sources and (2) the intrinsic uncertainty associated with the computational model. Here, we propose a data-driven framework to tackle these two challenges by combining high throughput physical/surrogate model simulations and the AM-Bench experimental data from the National Institute of Standards and Technology (NIST). We first construct a surrogate model, based on high throughput physical simulations, for predicting the three-dimensional (3D) melt pool geometry and its uncertainty with respect to AM parameters and uncertainty sources. We then employ a sequential Bayesian calibration method to perform experimental parameter calibration and model correction to significantly improve the validity of the 3D melt pool surrogate model. The application of the calibrated melt pool model to UQ of the porosity level, an important quality factor, of AM parts, demonstrates its potential use in AM quality control. The proposed UQ framework can be generally applicable to different AM processes, representing a significant advance toward physics-based quality control of AM products.

     
    more » « less
  4. null (Ed.)
    Most biological functional systems are complex, and this complexity is a fundamental driver of diversity. Because input parameters interact in complex ways, a holistic understanding of functional systems is key to understanding how natural selection produces diversity. We present uncertainty quantification (UQ) as a quantitative analysis tool on computational models to study the interplay of complex systems and diversity. We investigate peristaltic pumping in a racetrack circulatory system using a computational model and analyse the impact of three input parameters (Womersley number, compression frequency, compression ratio) on flow and the energetic costs of circulation. We employed two models of peristalsis (one that allows elastic interactions between the heart tube and fluid and one that does not), to investigate the role of elastic interactions on model output. A computationally cheaper surrogate of the input parameter space was created with generalized polynomial chaos expansion to save computational resources. Sobol indices were then calculated based on the generalized polynomial chaos expansion and model output. We found that all flow metrics were highly sensitive to changes in compression ratio and insensitive to Womersley number and compression frequency, consistent across models of peristalsis. Elastic interactions changed the patterns of parameter sensitivity for energetic costs between the two models, revealing that elastic interactions are probably a key physical metric of peristalsis. The UQ analysis created two hypotheses regarding diversity: favouring high flow rates (where compression ratio is large and highly conserved) and minimizing energetic costs (which avoids combinations of high compression ratios, high frequencies and low Womersley numbers). 
    more » « less
  5. Assessing the effects of input uncertainty on simulation results for multiphase flows will allow for more robust engineering designs and improved devices. For example, in atomizing jets, surface tension plays a critical role in determining when and how coherent liquid structures break up. Uncertainty in the surface tension coefficient can lead to uncertainty in spray angle, drop size, and velocity distribution. Uncertainty quantification (UQ) determines how input uncertainties affect outputs, and the approach taken can be classified as non-intrusive or intrusive. A classical, non-intrusive approach is the Monte-Carlo scheme, which requires multiple simulation runs using samples from a distribution of inputs. Statistics on output variability are computed from the many simulation outputs. While non-intrusive schemes are straightforward to implement, they can quickly become cost prohibitive, suffer from convergence issues, and have problems with confounding factors, making it difficult to look at uncertainty in multiple variables at once. Alternatively, an intrusive scheme inserts stochastic (uncertain) variables into the governing equations, modifying the mathematics and numerical methods used, but possibly reducing computational cost. In this work, we extend UQ methods developed for single-phase flows to handle gas-liquid multiphase dynamics by developing a stochastic conservative level set approach and a stochastic continuous surface tension method. An oscillating droplet and a 2-D atomizing jet are used to test the method. In these test cases, uncertainty about the surface tension coefficient and initial starting position will be explored, including the impact on breaking/ merging interfaces. 
    more » « less