skip to main content


Title: An Efficient Polynomial Chaos Expansion Method for Uncertainty Quantification in Dynamic Systems
Uncertainty is a common feature in first-principles models that are widely used in various engineering problems. Uncertainty quantification (UQ) has become an essential procedure to improve the accuracy and reliability of model predictions. Polynomial chaos expansion (PCE) has been used as an efficient approach for UQ by approximating uncertainty with orthogonal polynomial basis functions of standard distributions (e.g., normal) chosen from the Askey scheme. However, uncertainty in practice may not be represented well by standard distributions. In this case, the convergence rate and accuracy of the PCE-based UQ cannot be guaranteed. Further, when models involve non-polynomial forms, the PCE-based UQ can be computationally impractical in the presence of many parametric uncertainties. To address these issues, the Gram–Schmidt (GS) orthogonalization and generalized dimension reduction method (gDRM) are integrated with the PCE in this work to deal with many parametric uncertainties that follow arbitrary distributions. The performance of the proposed method is demonstrated with three benchmark cases including two chemical engineering problems in terms of UQ accuracy and computational efficiency by comparison with available algorithms (e.g., non-intrusive PCE).  more » « less
Award ID(s):
1727487
NSF-PAR ID:
10281283
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Applied Mechanics
Volume:
2
Issue:
3
ISSN:
2673-3161
Page Range / eLocation ID:
460 to 481
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Uncertainty quantification (UQ) is an important part of mathematical modeling and simulations, which quantifies the impact of parametric uncertainty on model predictions. This paper presents an efficient approach for polynomial chaos expansion (PCE) based UQ method in biological systems. For PCE, the key step is the stochastic Galerkin (SG) projection, which yields a family of deterministic models of PCE coefficients to describe the original stochastic system. When dealing with systems that involve nonpolynomial terms and many uncertainties, the SG-based PCE is computationally prohibitive because it often involves high-dimensional integrals. To address this, a generalized dimension reduction method (gDRM) is coupled with quadrature rules to convert a high-dimensional integral in the SG into a few lower dimensional ones that can be rapidly solved. The performance of the algorithm is validated with two examples describing the dynamic behavior of cells. Compared to other UQ techniques (e.g., nonintrusive PCE), the results show the potential of the algorithm to tackle UQ in more complicated biological systems. 
    more » « less
  2. Summary

    This paper presents an approach for efficient uncertainty analysis (UA) using an intrusive generalized polynomial chaos (gPC) expansion. The key step of the gPC‐based uncertainty quantification(UQ) is the stochastic Galerkin (SG) projection, which can convert a stochastic model into a set of coupled deterministic models. The SG projection generally yields a high‐dimensional integration problem with respect to the number of random variables used to describe the parametric uncertainties in a model. However, when the number of uncertainties is large and when the governing equation of the system is highly nonlinear, the SG approach‐based gPC can be challenging to derive explicit expressions for the gPC coefficients because of the low convergence in the SG projection. To tackle this challenge, we propose to use a bivariate dimension reduction method (BiDRM) in this work to approximate a high‐dimensional integral in SG projection with a few one‐ and two‐dimensional integrations. The efficiency of the proposed method is demonstrated with three different examples, including chemical reactions and cell signaling. As compared to other UA methods, such as the Monte Carlo simulations and nonintrusive stochastic collocation (SC), the proposed method shows its superior performance in terms of computational efficiency and UA accuracy.

     
    more » « less
  3. Quantifying the impact of parametric and model-form uncertainty on the predictions of stochastic models is a key challenge in many applications. Previous work has shown that the relative entropy rate is an effective tool for deriving path-space uncertainty quantification (UQ) bounds on ergodic averages. In this work we identify appropriate information-theoretic objects for a wider range of quantities of interest on path-space, such as hitting times and exponentially discounted observables, and develop the corresponding UQ bounds. In addition, our method yields tighter UQ bounds, even in cases where previous relative-entropy-based methods also apply, e.g. , for ergodic averages. We illustrate these results with examples from option pricing, non-reversible diffusion processes, stochastic control, semi-Markov queueing models, and expectations and distributions of hitting times. 
    more » « less
  4. Assessing the effects of input uncertainty on simulation results for multiphase flows will allow for more robust engineering designs and improved devices. For example, in atomizing jets, surface tension plays a critical role in determining when and how coherent liquid structures break up. Uncertainty in the surface tension coefficient can lead to uncertainty in spray angle, drop size, and velocity distribution. Uncertainty quantification (UQ) determines how input uncertainties affect outputs, and the approach taken can be classified as non-intrusive or intrusive. A classical, non-intrusive approach is the Monte-Carlo scheme, which requires multiple simulation runs using samples from a distribution of inputs. Statistics on output variability are computed from the many simulation outputs. While non-intrusive schemes are straightforward to implement, they can quickly become cost prohibitive, suffer from convergence issues, and have problems with confounding factors, making it difficult to look at uncertainty in multiple variables at once. Alternatively, an intrusive scheme inserts stochastic (uncertain) variables into the governing equations, modifying the mathematics and numerical methods used, but possibly reducing computational cost. In this work, we extend UQ methods developed for single-phase flows to handle gas-liquid multiphase dynamics by developing a stochastic conservative level set approach and a stochastic continuous surface tension method. An oscillating droplet and a 2-D atomizing jet are used to test the method. In these test cases, uncertainty about the surface tension coefficient and initial starting position will be explored, including the impact on breaking/ merging interfaces. 
    more » « less
  5. Abstract

    The ambient solar wind plays a significant role in propagating interplanetary coronal mass ejections and is an important driver of space weather geomagnetic storms. A computationally efficient and widely used method to predict the ambient solar wind radial velocity near Earth involves coupling three models: Potential Field Source Surface, Wang‐Sheeley‐Arge (WSA), and Heliospheric Upwind eXtrapolation. However, the model chain has 11 uncertain parameters that are mainly non‐physical due to empirical relations and simplified physics assumptions. We, therefore, propose a comprehensive uncertainty quantification (UQ) framework that is able to successfully quantify and reduce parametric uncertainties in the model chain. The UQ framework utilizes variance‐based global sensitivity analysis followed by Bayesian inference via Markov chain Monte Carlo to learn the posterior densities of the most influential parameters. The sensitivity analysis results indicate that the five most influential parameters are all WSA parameters. Additionally, we show that the posterior densities of such influential parameters vary greatly from one Carrington rotation to the next. The influential parameters are trying to overcompensate for the missing physics in the model chain, highlighting the need to enhance the robustness of the model chain to the choice of WSA parameters. The ensemble predictions generated from the learned posterior densities significantly reduce the uncertainty in solar wind velocity predictions near Earth.

     
    more » « less