Autonomous systems, such as Unmanned Aerial
Vehicles (UAVs), are expected to run complex reinforcement
learning (RL) models to execute fully autonomous positionnavigation-time tasks within stringent onboard weight and power
constraints. We observe that reducing onboard operating voltage
can benefit the energy efficiency of both the computation and
flight mission, however, it can also result in on-chip bit failures
that are detrimental to mission safety and performance. To this
end, we propose BERRY, a robust learning framework to improve
bit error robustness and energy efficiency for RL-enabled autonomous systems. BERRY supports robust learning, both offline
and on-board the UAV, and for the first time, demonstrates the
practicality of robust low-voltage operation on UAVs that leads to
high energy savings in both compute-level operation and systemlevel quality-of-flight. We perform extensive experiments on 72
autonomous navigation scenarios and demonstrate that BERRY
generalizes well across environments, UAVs, autonomy policies,
operating voltages and fault patterns, and consistently improves
robustness, efficiency and mission performance, achieving up to
15.62% reduction in flight energy, 18.51% increase in the number
of successful missions, and 3.43× processing energy reduction.
more »
« less
Autonomous Flying With Neuromorphic Sensing
Autonomous flight for large aircraft appears to be within our reach. However, launching autonomous systems for everyday missions still requires an immense interdisciplinary research effort supported by pointed policies and funding. We believe that concerted endeavors in the fields of neuroscience, mathematics, sensor physics, robotics, and computer science are needed to address remaining crucial scientific challenges. In this paper, we argue for a bio-inspired approach to solve autonomous flying challenges, outline the frontier of sensing, data processing, and flight control within a neuromorphic paradigm, and chart directions of research needed to achieve operational capabilities comparable to those we observe in nature. One central problem of neuromorphic computing is learning. In biological systems, learning is achieved by adaptive and relativistic information acquisition characterized by near-continuous information retrieval with variable rates and sparsity. This results in both energy and computational resource savings being an inspiration for autonomous systems. We consider pertinent features of insect, bat and bird flight behavior as examples to address various vital aspects of autonomous flight. Insects exhibit sophisticated flight dynamics with comparatively reduced complexity of the brain. They represent excellent objects for the study of navigation and flight control. Bats and birds enable more complex models of attention and point to the importance of active sensing for conducting more complex missions. The implementation of neuromorphic paradigms for autonomous flight will require fundamental changes in both traditional hardware and software. We provide recommendations for sensor hardware and processing algorithm development to enable energy efficient and computationally effective flight control.
more »
« less
- Award ID(s):
- 1734744
- PAR ID:
- 10280823
- Date Published:
- Journal Name:
- Frontiers in Neuroscience
- Volume:
- 15
- ISSN:
- 1662-453X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Artificial intelligence enabled by neural networks has enabled applications in many fields (e.g. medicine, finance, autonomous vehicles). Software implementations of neural networks on conventional computers are limited in speed and energy efficiency. Neuromorphic engineering aims to build processors in which hardware mimic neurons and synapses in brain for distributed and parallel processing. Neuromorphic engineering enabled by silicon photonics can offer subnanosecond latencies, and can extend the domain of artificial intelligence applications to high-performance computing and ultrafast learning. We discuss current progress and challenges on these demonstrations to scale to practical systems for training and inference.more » « less
-
Abstract Microelectronic computers have encountered challenges in meeting all of today’s demands for information processing. Meeting these demands will require the development of unconventional computers employing alternative processing models and new device physics. Neural network models have come to dominate modern machine learning algorithms, and specialized electronic hardware has been developed to implement them more efficiently. A silicon photonic integration industry promises to bring manufacturing ecosystems normally reserved for microelectronics to photonics. Photonic devices have already found simple analog signal processing niches where electronics cannot provide sufficient bandwidth and reconfigurability. In order to solve more complex information processing problems, they will have to adopt a processing model that generalizes and scales. Neuromorphic photonics aims to map physical models of optoelectronic systems to abstract models of neural networks. It represents a new opportunity for machine information processing on sub-nanosecond timescales, with application to mathematical programming, intelligent radio frequency signal processing, and real-time control. The strategy of neuromorphic engineering is to externalize the risk of developing computational theory alongside hardware. The strategy of remaining compatible with silicon photonics externalizes the risk of platform development. In this perspective article, we provide a rationale for a neuromorphic photonics processor, envisioning its architecture and a compiler. We also discuss how it can be interfaced with a general purpose computer, i.e. a CPU, as a coprocessor to target specific applications. This paper is intended for a wide audience and provides a roadmap for expanding research in the direction of transforming neuromorphic photonics into a viable and useful candidate for accelerating neuromorphic computing.more » « less
-
The expansion of complex autonomous sensing and control mechanisms in the Internet-of-Things systems clashes with constraints on computation and wireless communication resources. In this paper, we propose a framework to address this conflict for applications in which resolution using a centralized architecture with a general-purpose compression of observations is not appropriate. Three approaches for distributing observation detection workload between sensing and processing devices are considered for sensor systems within wireless islands. Each of the approaches is formulated for the shared configuration of a sensor- edge system, in which the network structure, observation moni- toring problem, and machine learning-based detector implement- ing it are not modified. For every approach, a high-level strategy for realization of the detector for different assumptions on the relation between its complexity and the system’s constraints is considered. In each case, the potential for the constraints’ satisfaction is shown to exist and be exploitable via division, approximation, and delegation of the detector’s workload to the sensing devices off the edge processor. We present examples of applications that benefit from the proposed approaches.more » « less
-
An integrated sensing approach that fuses vision and range information to land an autonomous class 1 unmanned aerial system (UAS) controlled by e-modification model reference adaptive control is presented. The navigation system uses a feature detection algorithm to locate features and compute the corresponding range vectors on a coarsely instrumented landing platform. The relative translation and rotation state is estimated and sent to the flight computer for control feedback. A robust adaptive control law that guarantees uniform ultimate boundedness of the adaptive gains in the presence of bounded external disturbances is used to control the flight vehicle. Experimental flight tests are conducted to validate the integration of these systems and measure the quality of result from the navigation solution. Robustness of the control law amidst flight disturbances and hardware failures is demonstrated. The research results demonstrate the utility of low-cost, low-weight navigation solutions for navigation of small, autonomous UAS to carryout littoral proximity operations about unprepared shipdecks.more » « less