Robots typically interact with their environments via feedback loops consisting of electronic sensors, microcontrollers, and actuators, which can be bulky and complex. Researchers have sought new strategies for achieving autonomous sensing and control in next-generation soft robots. We describe here an electronics-free approach for autonomous control of soft robots, whose compositional and structural features embody the sensing, control, and actuation feedback loop of their soft bodies. Specifically, we design multiple modular control units that are regulated by responsive materials such as liquid crystal elastomers. These modules enable the robot to sense and respond to different external stimuli (light, heat, and solvents), causing autonomous changes to the robot’s trajectory. By combining multiple types of control modules, complex responses can be achieved, such as logical evaluations that require multiple events to occur in the environment before an action is performed. This framework for embodied control offers a new strategy toward autonomous soft robots that operate in uncertain or dynamic environments.
more »
« less
This content will become publicly available on March 31, 2026
Intelligent Sensing-to-Action for Robust Autonomy at the Edge: Opportunities and Challenges
Autonomous edge computing in robotics, smart cities, and autonomous vehicles relies on the seamless integration of sensing, processing, and actuation for real-time decision-making in dynamic environments. At its core is the sensing-to-action loop, which iteratively aligns sensor inputs with computational models to drive adaptive control strategies. These loops can adapt to hyper-local conditions, enhancing resource efficiency and responsiveness, but also face challenges such as resource constraints, synchronization delays in multimodal data fusion, and the risk of cascading errors in feedback loops. This article explores how proactive, context-aware sensing-to-action and action-to-sensing adaptations can enhance efficiency by dynamically adjusting sensing and computation based on task demands, such as sensing a very limited part of the environment and predicting the rest. By guiding sensing through control actions, action-to-sensing pathways can improve task relevance and resource use, but they also require robust monitoring to prevent cascading errors and maintain reliability. Multi-agent sensing-action loops further extend these capabilities through coordinated sensing and actions across distributed agents, optimizing resource use via collaboration. Additionally, neuromorphic computing, inspired by biological systems, provides an efficient framework for spike-based, event-driven processing that conserves energy, reduces latency, and supports hierarchical control-making it ideal for multi-agent optimization. This article highlights the importance of end-to-end co-design strategies that align algorithmic models with hardware and environmental dynamics, improve cross-layer inter-dependencies to improve throughput, precision, and adaptability for energy-efficient edge autonomy in complex environments.
more »
« less
- Award ID(s):
- 2317974
- PAR ID:
- 10621591
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 978-3-9826741-0-0
- Page Range / eLocation ID:
- 1-10
- Format(s):
- Medium: X
- Location:
- Lyon, France
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We propose and evaluate a learning-based framework to address multi-agent resource allocation in coupled wireless systems. In particular we consider, multiple agents (e.g., base stations, access points, etc.) that choose amongst a set of resource allocation options towards achieving their own performance objective /requirements, and where the performance observed at each agent is further coupled with the actions chosen by the other agents, e.g., through interference, channel leakage, etc. The challenge is to find the best collective action. To that end we propose a Multi-Armed Bandit (MAB) framework wherein the best actions (aka arms) are adaptively learned through online reward feedback. Our focus is on systems which are "weakly-coupled" wherein the best arm of each agent is invariant to others' arm selection the majority of the time - this majority structure enables one to develop light weight efficient algorithms. This structure is commonly found in many wireless settings such as channel selection and power control. We develop a bandit algorithm based on the Track-and-Stop strategy, which shows a logarithmic regret with respect to a genie. Finally through simulation, we exhibit the potential use of our model and algorithm in several wireless application scenarios.more » « less
-
As edge computing and sensing devices continue to proliferate, distributed machine learning (ML) inference pipelines are becoming popular for enabling low-latency, real-time decision-making at scale. However, the geographically dispersed and often resource-constrained nature of edge devices makes them susceptible to various failures, such as hardware malfunctions, network disruptions, and device overloading. These edge failures can significantly affect the performance and availability of inference pipelines and the sensing-to-decision-making loops they enable. In addition, the complexity of task dependencies amplifies the difficulty of maintaining performant and reliable ML operations. To address these challenges and minimize the impact of edge failures on inference pipelines, this paper presents several fault-tolerant approaches, including sensing redundancy, structural resilience, failover replication, and pipeline reconfiguration. For each approach, we explain the key techniques and highlight their effectiveness and tradeoffs. Finally, we discuss the challenges associated with these approaches and outline future directions.more » « less
-
Data volumes are exploding as sensors proliferate and become more capable. Edge computing is envisioned as a path to distribute processing and reduce latency. Many models of Edge computing consider small devices running conventional software. Our model includes a more lightweight execution engine for network microservices and a network scheduling framework to configure network processing elements to process streams and direct the appropriate traffic to them. In this article, we describe INDIANA, a complete framework for in-network microservices. We will describe how the two components-the INDIANA network Processing Element (InPE) and the Flange Network Operating System (NOS)-work together to achieve effective in-network processing to improve performance in edge to cloud environments. Our processing elements provide lightweight compute units optimized for efficient stream processing. These elements are customizable and vary in sophistication and resource consumption. The Flange NOS provides first-class flow based reasoning to drive function placement, network configuration, and load balancing that can respond dynamically to network conditions. We describe design considerations and discuss our approach and implementations. We evaluate the performance of stream processing and examine the performance of several exemplar applications on networks of increasing scale and complexity.more » « less
-
The rise of mobile multi-agent robotic platforms is outpacing control paradigms for tasks that require operating in complex, realistic environments. To leverage inertial, energetic, and cost bene fits of small-scale robots, critical future applications may depend on coordinating large numbers of agents with minimal onboard sensing and communication resources. In this article, we present the perspective that adaptive and resilient autonomous control of swarms of minimal agents might follow from a direct analogy with the neural circuits of spatial cognition in rodents. We focus on spatial neurons such as place cells found in the hippocampus. Two major emergent hippocampal phenomena, self-stabilizing attractor maps and temporal organization by shared oscillations, reveal theoretical solutions for decentralized self-organization and distributed communication in the brain. We consider that autonomous swarms of minimal agents with low-bandwidth communication are analogous to brain circuits of oscillatory neurons with spike-based propagation of information. The resulting notion of `neural swarm control' has the potential to be scalable, adaptive to dynamic environments, and resilient to communication failures and agent attrition. We illustrate a path toward extending this analogy into multi-agent systems applications and discuss implications for advances in decentralized swarm control.more » « less
An official website of the United States government
