skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effect of actuation method on hydrodynamics of elastic plates oscillating at resonance
In this work we investigate the effects of two distinct actuation methods on the hydrodynamics of elastic rectangular plates oscillating at resonance. Plates are driven by plunging motion at the root or actuated by a distributed internal bending moment at Reynolds numbers between 500 and 4000. The latter actuation method represents internally actuated smart materials and emulates the natural ability of swimming animals to continuously change their shapes with muscles. We conduct experiments with plunging elastic plates and piezoelectric plate actuators that are simulated using a fully coupled three-dimensional computational model based on the lattice Boltzmann method. After experimental validation the computational model is employed to probe plate hydrodynamics for a wide range of parameters, including large oscillation amplitudes which prompts nonlinear effects. The comparison between the two actuation methods reveals that, for the same level of tip deflection, externally actuated plates significantly outperform internally actuated plates in terms of thrust production and hydrodynamic efficiency. The reduced performance of internally actuated plates is associated with their suboptimal bending shapes which leads to a trailing edge geometry with enhanced vorticity generation and viscous dissipation. Furthermore, the difference in actuation methods impacts the inertia coefficient characterizing the plate oscillations, especially for large amplitudes. It is found that the inertia coefficient strongly depends on the tip deflection amplitude and the Reynolds number, and actuation method, especially for larger amplitudes.  more » « less
Award ID(s):
1705739
PAR ID:
10280978
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
910
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Using computational modelling, we probe the hydrodynamics of a bio-inspired elastic propulsor with hybrid actuation that oscillates at resonance in a Newtonian fluid. The propulsor is actuated by a heaving motion at the base and by an internal bending moment distributed along the propulsor length. The simulations reveal that by tuning the phase difference between the external and internal actuation, the propulsor thrust and free-swimming velocity can be regulated in a wide range while maintaining high efficiency. Furthermore, the hybrid propulsor outperforms propulsors with either of the actuation methods. The enhanced performance is associated with the emerging bending pattern maintaining large tip displacement with reduced centre-of-mass displacement. The results are useful for developing highly efficient robotic swimmers utilizing smart materials as propulsors with simplified design and operation. 
    more » « less
  2. A self-powered, and self-actuating lithium ion battery (LIB) has the potential to achieve large deformation while still maintaining actuation force. The energy storage capability allows for continual actuation without an external power source once charged. Reshaping the actuator requires a nonuniform distribution of charge and/or bending stiffness. Spatially varying the state of charge and bending stiffness along the length of a segmented unimorph configuration have the effect of improving the tailorability of the deformed actuator. In this paper, an analytical model is developed to predict the actuation properties of the segmented unimorph beam to determine its usefulness as an actuator. The model predicts the free deflection, blocked deflection, and blocked force at the tip as a function of spatially varying state of charge and bending stiffness. The main contribution of the paper is the development of blocked deflection over the length of the segmented unimorph, which has not yet been considered in the literature. The model is verified using experimental data and commercial finite element analysis. 
    more » « less
  3. Abstract Active needles demonstrate improved accuracy and tip deflection compared to their passive needle counterparts, a crucial advantage in percutaneous procedures. However, the ability of these needles to effectively navigate through tissues is governed by needle-tissue interaction, which depends on the tip shape, the cannula surface geometry, and the needle insertion method. In this research, we evaluated the effect of cannula surface modifications and the application of a vibrational insertion technique on the performance of shape memory alloy (SMA)-actuated active needles. These features were inspired by the mosquito proboscis’ unique design and skin-piercing technique that decreased the needle tissue interaction force, thus enhancing tip deflection and steering accuracy. The bioinspired features, i.e., mosquito-inspired cannula design and vibrational insertion method, in an active needle reduced the insertion force by 26.24% and increased the tip deflection by 37.11% in prostate-mimicking gel. In addition, trajectory tracking error was reduced by 48%, and control effort was reduced by 23.25%, pointing towards improved needle placement accuracy. The research highlights the promising potential of bioinspired SMA-actuated active needles. Better tracking control and increased tip deflection are anticipated, potentially leading to improved patient outcomes and minimized risk of complications during percutaneous procedures. 
    more » « less
  4. In this paper two nonlinear effects are investigated. One is the effect of the static stiffness nonlinearity in changing the linear dynamic natural frequency and the other is the combination of nonlinear stiffness and nonlinear inertia effects in changing the nonlinear dynamic transient response due to a change in the initial release state of the system. A theoretical model has been developed for a cantilevered thin plate with a range of length to width ratio using beam theory and considering both stiffness and inertial nonlinearities in the model. Lagrange’s equation was used to deduce nonlinear inertia and stiffness matrices for a modal representation. Some insights into how these nonlinear components influence the beam response are presented. Measurements with both a hammer test and also a release test of cantilevered thin plates were done using different configurations and tip mass values. Results from static and dynamic analysis using the linear and the nonlinear theoretical model show good agreement between theory and experiment for natural frequencies and the amplitude displacements versus time. 
    more » « less
  5. Thin (slender) steel plates possess shear strength beyond the elastic buckling load which is commonly referred to as the post-buckling capacity. Semi-empirical equations based on experimental tests of plate girders have been used for decades to predict the ultimate post-buckling strength of slender webs. However, several recent studies have shown that the current models for predicting the ultimate shear post-buckling capacity of thin plates are based on some incorrect assumptions regarding their mechanical behavior. As a result, the current design equations provide an approximate estimate of capacity for the range of parameters in the test data upon which they are founded. This paper explores the fundamental behavior of thin plates under pure shear. Such a fundamental examination of shear post-buckling behavior in thin plates is needed to enable design procedures that can optimize a plate’s shear strength and load-deformation performance for a wider range of loading and design parameters. Using finite element analyses, which are validated against available results of previous experimental tests, outputs such as plastic strains, von Mises stresses, principal stresses, and principal stress directions are examined on a buckled plate acting in pure shear. The internal bending, shear, and membrane stresses in the plate’s finite elements are also evaluated. In this study, these evaluations are performed for a simply-supported plate with an aspect ratio equal to 1.0 and slenderness ratio equal to 134. Results show that localized bending in the plates due to the out-of-plane post-buckling deformations appear to be a significant factor in the ultimate shear post-buckling capacity of the plate. Also, the compressive stresses continue to increase beyond the onset of elastic buckling in some regions of the plate, contrary to current design assumptions. Overall, this study provides new insights into the mechanics of shear post-buckling behavior of thin plates that can be exploited for design procedures that are consistent with mechanical behavior. 
    more » « less