skip to main content


Title: Differential neuropeptide modulation of premotor and motor neurons in the lobster cardiac ganglion
The American lobster, Homarus americanus, cardiac neuromuscular system is controlled by the cardiac ganglion (CG), a central pattern generator consisting of four premotor and five motor neurons. Here, we show that the premotor and motor neurons can establish independent bursting patterns when decoupled by a physical ligature. We also show that mRNA encoding myosuppressin, a cardioactive neuropeptide, is produced within the CG. We thus asked whether myosuppressin modulates the decoupled premotor and motor neurons, and if so, how this modulation might underlie the role(s) that these neurons play in myosuppressin’s effects on ganglionic output. Although myosuppressin exerted dose-dependent effects on burst frequency and duration in both premotor and motor neurons in the intact CG, its effects on the ligatured ganglion were more complex, with different effects and thresholds on the two types of neurons. These data suggest that the motor neurons are more important in determining the changes in frequency of the CG elicited by low concentrations of myosuppressin, whereas the premotor neurons have a greater impact on changes elicited in burst duration. A single putative myosuppressin receptor (MSR-I) was previously described from the Homarus nervous system. We identified four additional putative MSRs (MSR-II–V) and investigated their individual distributions in the CG premotor and motor neurons using RT-PCR. Transcripts for only three receptors (MSR-II–IV) were amplified from the CG. Potential differential distributions of the receptors were observed between the premotor and motor neurons; these differences may contribute to the distinct physiological responses of the two neuron types to myosuppressin. NEW & NOTEWORTHY Premotor and motor neurons of the Homarus americanus cardiac ganglion (CG) are normally electrically and chemically coupled, and generate rhythmic bursting that drives cardiac contractions; we show that they can establish independent bursting patterns when physically decoupled by a ligature. The neuropeptide myosuppressin modulates different aspects of the bursting pattern in these neuron types to determine the overall modulation of the intact CG. Differential distribution of myosuppressin receptors may underlie the observed responses to myosuppressin.  more » « less
Award ID(s):
1354567
NSF-PAR ID:
10281200
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Neurophysiology
Volume:
124
Issue:
4
ISSN:
0022-3077
Page Range / eLocation ID:
1241 to 1256
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Post-translational modifications (PTMs) diversify peptide structure and allow for greater flexibility within signaling networks. The cardiac neuromuscular system of the American lobster, Homarus americanus, is made up of a central pattern generator, the cardiac ganglion (CG), and peripheral cardiac muscle. Together, these components produce flexible output in response to peptidergic modulation. Here, we examined the role of PTMs in determining the effects of a cardioactive neuropeptide, myosuppressin (pQDLDHVFLRFamide), on the whole heart, the neuromuscular junction/muscle, the isolated CG, and the neurons of the CG. Mature myosuppressin and noncyclized myosuppressin (QDLDHVFLRFamide) elicited similar and significant changes in whole heart contraction amplitude and frequency, stimulated muscle contraction amplitude and the bursting pattern of the intact and ligatured neurons of the ganglion. In the whole heart, nonamidated myosuppressin (pQDLDHVFLRFG) elicited only a small decrease in frequency and amplitude. In the absence of motor neuron input, nonamidated myosuppressin did not cause any significant changes in the amplitude of stimulated contractions. In the intact CG, nonamidated myosuppressin elicited a small but significant decrease in burst duration. Further analysis revealed a correlation between the extent of modulation elicited by nonamidated myosuppressin in the whole heart and the isolated, intact CG. When the neurons of the CG were physically decoupled, nonamidated myosuppressin elicited highly variable responses. Taken together, these data suggest that amidation, but not cyclization, is critical in enabling this peptide to exert its effects on the cardiac neuromuscular system. NEW & NOTEWORTHY Myosuppressin (pQDLDHVFLRFamide), a well-characterized crustacean neuropeptide, and its noncyclized (QDLDHVFLRFamide) and nonamidated (pQDLDHVFLRFG) isoforms alter the output of the cardiac neuromuscular system of the American lobster, Homarus americanus. Mature myosuppressin and noncyclized myosuppressin elicited similar and significant changes across all levels of the isolated system, whereas responses to nonamidated myosuppressin were significantly different from other isoforms and were highly variable. These data support the diversity of peptide action as a function of peptide structure. 
    more » « less
  2. Changes in ambient temperature affect all biological processes. However, these effects are process specific and often vary non-linearly. It is thus a non-trivial problem for neuronal circuits to maintain coordinated, functional output across a range of temperatures. The cardiac nervous systems in two species of decapod crustaceans, Homarus americanus and Cancer borealis , can maintain function across a wide but physiologically relevant temperature range. However, the processes that underlie temperature resilience in neuronal circuits and muscle systems are not fully understood. Here, we demonstrate that the non-isolated cardiac nervous system (i.e., the whole heart: neurons, effector organs, intrinsic feedback systems) in the American lobster, H. americanus , is more sensitive to warm temperatures than the isolated cardiac ganglion (CG) that controls the heartbeat. This was surprising as modulatory processes known to stabilize the output from the CG are absent when the ganglion is isolated. One source of inhibitory feedback in the intact cardiac neuromuscular system is nitric oxide (NO), which is released in response to heart contractions. We hypothesized that the greater temperature tolerance observed in the isolated CG is due to the absence of NO feedback. Here, we demonstrate that applying an NO donor to the isolated CG reduces its temperature tolerance. Similarly, we show that the NO synthase inhibitor L-nitroarginine (LNA) increases the temperature tolerance of the non-isolated nervous system. This is sufficient to explain differences in temperature tolerance between the isolated CG and the whole heart. However, in an intact lobster, the heart and CG are modulated by an array of endogenous peptides and hormones, many of which are positive regulators of the heartbeat. Many studies have demonstrated that excitatory modulators increase temperature resilience. However, this neuromuscular system is regulated by both excitatory and inhibitory peptide modulators. Perfusing SGRNFLRFamide, a FLRFamide-like peptide, through the heart increases the non-isolated nervous system’s tolerance to high temperatures. In contrast, perfusing myosuppressin, a peptide that negatively regulates the heartbeat frequency, decreases the temperature tolerance. Our data suggest that, in this nervous system, positive regulators of neural output increase temperature tolerance of the neuromuscular system, while modulators that decrease neural output decrease temperature tolerance. 
    more » « less
  3. Neural network flexibility includes changes in neuronal participation between networks, such as the switching of neurons between single- and dual-network activity. We previously identified a neuron that is recruited to burst in time with an additional network via modulation of its intrinsic membrane properties, instead of being recruited synaptically into the second network. However, the modulated intrinsic properties were not determined. Here, we use small networks in the Jonah crab ( Cancer borealis) stomatogastric nervous system (STNS) to examine modulation of intrinsic properties underlying neuropeptide (Gly 1 -SIFamide)-elicited neuronal switching. The lateral posterior gastric neuron (LPG) switches from exclusive participation in the fast pyloric (∼1 Hz) network, due to electrical coupling, to dual-network activity that includes periodic escapes from the fast rhythm via intrinsically generated oscillations at the slower gastric mill network frequency (∼0.1 Hz). We isolated LPG from both networks by pharmacology and hyperpolarizing current injection. Gly 1 -SIFamide increased LPG intrinsic excitability and rebound from inhibition and decreased spike frequency adaptation, which can all contribute to intrinsic bursting. Using ion substitution and channel blockers, we found that a hyperpolarization-activated current, a persistent sodium current, and calcium or calcium-related current(s) appear to be primary contributors to Gly 1 -SIFamide-elicited LPG intrinsic bursting. However, this intrinsic bursting was more sensitive to blocking currents when LPG received rhythmic electrical coupling input from the fast network than in the isolated condition. Overall, a switch from single- to dual-network activity can involve modulation of multiple intrinsic properties, while synaptic input from a second network can shape the contributions of these properties. NEW & NOTEWORTHY Neuropeptide-elicited intrinsic bursting was recently determined to switch a neuron from single- to dual-network participation. Here we identified multiple intrinsic properties modulated in the dual-network state and candidate ion channels underlying the intrinsic bursting. Bursting at the second network frequency was more sensitive to blocking currents in the dual-network state than when neurons were synaptically isolated from their home network. Thus, synaptic input can shape the contributions of modulated intrinsic properties underlying dual-network activity. 
    more » « less
  4. Central pattern generators produce rhythmic behaviors independently of sensory input; however, their outputs can be modulated by neuropeptides, thereby allowing for functional flexibility. We investigated the effects of C-type allatostatins (AST-C) on the cardiac ganglion (CG), which is the central pattern generator that controls the heart of the American lobster, Homarus americanus, to identify the biological mechanism underlying the significant variability in individual responses to AST-C. We proposed that the presence of multiple receptors, and thus differential receptor distribution, was at least partly responsible for this observed variability. Using transcriptome mining and PCR-based cloning, we identified four AST-C receptors (ASTCRs) in the CG; we then characterized their cellular localization, binding potential, and functional activation. Only two of the four receptors, ASTCR1 and ASTCR2, were fully functional GPCRs that targeted to the cell surface and were activated by AST-C peptides in our insect cell expression system. All four, however, were amplified from CG cDNAs. Following the confirmation of ASTCR expression, we used physiological and bioinformatic techniques to correlate receptor expression with cardiac responses to AST-C across individuals. Expression of ASTCR1 in the CG showed a negative correlation with increasing contraction amplitude in response to AST-C perfusion through the lobster heart, suggesting that the differential expression of ASTCRs within the CG is partly responsible for the specific physiological response to AST-C exhibited by a given individual lobster. 
    more » « less
  5. Navigation requires steering and propulsion, but how spinal circuits contribute to direction control during ongoing locomotion is not well understood. Here, we use drifting vertical gratings to evoke directed “fictive” swimming in intact but immobilized larval zebrafish while performing electrophysiological recordings from spinal neurons. We find that directed swimming involves unilateral changes in the duration of motor output and increased recruitment of motor neurons, without impacting the timing of spiking across or along the body. Voltage-clamp recordings from motor neurons reveal increases in phasic excitation and inhibition on the side of the turn. Current-clamp recordings from premotor interneurons that provide phasic excitation or inhibition reveal two types of recruitment patterns. A direction-agnostic pattern with balanced recruitment on the turning and nonturning sides is primarily observed in excitatory V2a neurons with ipsilateral descending axons, while a direction-sensitive pattern with preferential recruitment on the turning side is dominated by V2a neurons with ipsilateral bifurcating axons. Inhibitory V1 neurons are also divided into direction-sensitive and direction-agnostic subsets, although there is no detectable morphologic distinction. Our findings support the modular control of steering and propulsion by spinal premotor circuits, where recruitment of distinct subsets of excitatory and inhibitory interneurons provide adjustments in direction while on the move.

    SIGNIFICANCE STATEMENTSpinal circuits play an essential role in coordinating movements during locomotion. However, it is unclear how they participate in adjustments in direction that do not interfere with coordination. Here we have developed a system using larval zebrafish that allows us to directly record electrical signals from spinal neurons during “fictive” swimming guided by visual cues. We find there are subsets of spinal interneurons for coordination and others that drive unilateral asymmetries in motor neuron recruitment for direction control. Our findings suggest a modular organization of spinal premotor circuits that enables uninterrupted adjustments in direction during ongoing locomotion.

     
    more » « less