Title: Three Steps to Adapt Case Studies for Synchronous and Asynchronous Online Learning†
ABSTRACT Pandemic SARS-CoV-2 has ushered in a renewed interest in science along with rapid changes to educational modalities. While technology provides a variety of ways to convey learning resources, the incorporation of alternate modalities can be intimidating for those designing curricula. We propose strategies to permit rapid adaptation of curricula to achieve learning in synchronous, asynchronous, or hybrid learning environments. Case studies are a way to engage students in realistic scenarios that contextualize concepts and highlight applications in the life sciences. While case studies are commonly available and adaptable to course goals, the practical considerations of how to deliver and assess cases in online and blended environments can instill panic. Here we review existing resources and our collective experiences creating, adapting, and assessing case materials across different modalities. We discuss the benefits of using case studies and provide tips for implementation. Further, we describe functional examples of a three-step process to prepare cases with defined outcomes for individual student preparation, collaborative learning, and individual student synthesis to create an inclusive learning experience, whether in a traditional or remote learning environment. more »« less
Acosta, Halim; Lee, Seung; Mott, Bradford; Bae, Haesol; Glazewski, Krista; Hmelo-Silver, Cindy; Lester, James
(, International Educational Data Mining Society)
Benjamin, Paaßen; Carrie, Demmans Epp
(Ed.)
Collaborative game-based learning offers opportunities for students to participate in small group learning experiences that foster knowledge sharing, problem solving, and engagement. Student satisfaction with their collaborative experiences plays a pivotal role in shaping positive learning outcomes and is a critical factor in group success during learning. Gauging students申f satisfaction within collaborative learning contexts can offer insights into student engagement and participation levels while affording practitioners the ability to provide targeted interventions or scaffolding. In this paper,we propose a framework for inferring student collaboration satisfaction with multimodal learning analytics from collaborative interactions. Utilizing multimodal data collected from 50 middle school students engaged in collaborative game-based learning, we predict student collaboration satisfaction. We first evaluate the performance of baseline models on individual modalities for insight into which modalities are most informative. We then devise a multimodal deep learning model that leverages a cross-attention mechanism to attend to salient information across modalities to enhance collaboration satisfaction prediction. Finally,we conduct ablation and feature importance analysis to understand which combination of modalities and features is most effective. Findings indicate that various combinations of data sources are highly beneficial for student collaboration satisfaction prediction.
Wojdak, Krista; Smith, Michelle K; Orndorf, Hayley; Ramirez, Marie Louise
(, Teaching and Learning Inquiry)
With the onset of COVID-19, colleges and universities moved to emergency remote teaching, and instructors immediately adjusted their curricula. Many instructors adapted or developed new online lessons that they subsequently published as Open Educational Resources (OERs). While much has been examined related to how entire course designs evolved during this period, the same attention has not been paid to how individual lessons were structured to meet online learners’ needs. As such, we evaluated OER lessons for the integration of universal design for learning (UDL) guidelines and active learning strategies. We evaluated OER lessons published in CourseSource, which is an open-access, peer-reviewed journal that focuses on biology lessons implemented in undergraduate classrooms and provides the necessary details and supporting materials to replicate the lesson. We found that biology instructors used a variety of UDL guidelines and active learning strategies to encourage student learning and engagement in online teaching environments. This study also provides a collection of OER online lessons that instructors and educational developers can use to inform the practice of engaging biology students.
Das, Avijit; Ni, Zhen; Wu, Di
(, 2022 International Joint Conference on Neural Networks (IJCNN))
Economic dispatch in a multi-microgrid (MMG) system involves an increasing number of states from distributed energy resources (DERs) compared to a single microgrid. In these cases, traditional reinforcement learning (RL) approaches may become computationally expensive or less effective in finding the least-cost solution. This paper presents a novel RL approach that employs local learning agents to interact with individual microgrid environments in a distributed manner and a global agent to search for actions to minimize system cost at the MMG system level. The proposed distributed RL framework is more efficient in learning the dispatch policy compared to conventional approaches. Case studies are performed on a 3-microgrid system with different types of DERs. Results substantiate the effectiveness of the proposed approach in comparison with conventional methods in terms of operation costs, computation time, and peak-to-average ratio.
Basu, Satabdi; Rutstein, Daisy; Tate, Carol; Rachmatullah, Arif; Yang, Hui
(, SIGCSE 2022: Proceedings of the 53rd ACM Technical Symposium on Computer Science Education V. 1)
The rapid expansion of K-12 CS education has made it critical to support CS teachers, many of whom are new to teaching CS, with the necessary resources and training to strengthen their understanding of CS concepts and how to effectively teach CS. CS teachers are often tasked with teaching different curricula using different programming languages in different grades or during different school years, and tend to receive different professional development (PD) for each curriculum they are required to teach. This often leads to a lack of deep understanding of the underlying CS concepts and how different curricula address the same concepts in different ways. Empowering teachers to develop a deep understanding of CS standards, and use formative assessments to recognize common student challenges associated with the standards, will enable teachers to provide more effective CS instruction, irrespective of the curriculum and/or programming language they are tasked with using. This position paper advocates supporting CS teacher professional learning by supplementing existing curriculum-specific teacher PD with standards-aligned PD that focuses on teachers' conceptual understanding of CS standards and ability to adapt instruction based on student understanding of concepts underlying the CS standards. We share concrete examples of how to design standards-aligned educative resources and instructionally supportive tools that promote teachers' understanding of CS standards and common student challenges and develop teachers' formative assessment literacy, all essential components of CS pedagogical content knowledge.
AbstractThe relative effectiveness of reflection either through student generation of contrasting cases or through provided contrasting cases is not well‐established for adult learners. This paper presents a classroom study to investigate this comparison in a college level Computer Science (CS) course where groups of students worked collaboratively to design database access strategies. Forty‐four teams were randomly assigned to three reflection conditions ([GEN] directive to generate a contrasting case to the student solution and evaluate their trade‐offs in light of the principle, [CONT] directive to compare the student solution with a provided contrasting case and evaluate their trade‐offs in light of a principle, and [NSI] a control condition with a non‐specific directive for reflection evaluating the student solution in light of a principle). In the CONT condition, as an illustration of the use of LLMs to exemplify knowledge transformation beyond knowledge construction in the generation of an automated contribution to a collaborative learning discussion, an LLM generated a contrasting case to a group's solution to exemplify application of an alternative problem solving strategy in a way that highlighted the contrast by keeping many concrete details the same as those the group had most recently collaboratively constructed. While there was no main effect of condition on learning based on a content test, low‐pretest student learned more from CONT than GEN, with NSI not distinguishable from the other two, while high‐pretest students learned marginally more from the GEN condition than the CONT condition, with NSI not distinguishable from the other two. Practitioner notesWhat is already known about this topicReflection during or even in place of computer programming is beneficial for learning of principles for advanced computer science when the principles are new to students.Generation of contrasting cases and comparing contrasting cases have both been demonstrated to be effective as opportunities to learn from reflection in some contexts, though questions remain about ideal applicability conditions for adult learners.Intelligent conversational agents can be used effectively to deliver stimuli for reflection during collaborative learning, though room for improvement remains, which provides an opportunity to demonstrate the potential positive contribution of large language models (LLMs).What this paper addsThe study contributes new knowledge related to the differences in applicability conditions between generation of contrasting cases and comparison across provided contrasting cases for adult learning.The paper presents an application of LLMs as a tool to provide contrasting cases tailored to the details of actual student solutions.The study provides evidence from a classroom intervention study for positive impact on student learning of an LLM‐enabled intervention.Implications for practice and/or policyAdvanced computer science curricula should make substantial room for reflection alongside problem solving.Instructors should provide reflection opportunities for students tailored to their level of prior knowledge.Instructors would benefit from training to use LLMs as tools for providing effective contrasting cases, especially for low‐prior‐knowledge students.
Bixler, Andrea, Eslinger, Melissa, Kleinschmit, Adam J., Gaudier-Diaz, Monica M., Sankar, Usha, Marsteller, Patricia, Goller, Carlos C., and Robertson, Sabrina. Three Steps to Adapt Case Studies for Synchronous and Asynchronous Online Learning†. Retrieved from https://par.nsf.gov/biblio/10281202. Journal of Microbiology & Biology Education 22.1 Web. doi:10.1128/jmbe.v22i1.2337.
Bixler, Andrea, Eslinger, Melissa, Kleinschmit, Adam J., Gaudier-Diaz, Monica M., Sankar, Usha, Marsteller, Patricia, Goller, Carlos C., & Robertson, Sabrina. Three Steps to Adapt Case Studies for Synchronous and Asynchronous Online Learning†. Journal of Microbiology & Biology Education, 22 (1). Retrieved from https://par.nsf.gov/biblio/10281202. https://doi.org/10.1128/jmbe.v22i1.2337
Bixler, Andrea, Eslinger, Melissa, Kleinschmit, Adam J., Gaudier-Diaz, Monica M., Sankar, Usha, Marsteller, Patricia, Goller, Carlos C., and Robertson, Sabrina.
"Three Steps to Adapt Case Studies for Synchronous and Asynchronous Online Learning†". Journal of Microbiology & Biology Education 22 (1). Country unknown/Code not available. https://doi.org/10.1128/jmbe.v22i1.2337.https://par.nsf.gov/biblio/10281202.
@article{osti_10281202,
place = {Country unknown/Code not available},
title = {Three Steps to Adapt Case Studies for Synchronous and Asynchronous Online Learning†},
url = {https://par.nsf.gov/biblio/10281202},
DOI = {10.1128/jmbe.v22i1.2337},
abstractNote = {ABSTRACT Pandemic SARS-CoV-2 has ushered in a renewed interest in science along with rapid changes to educational modalities. While technology provides a variety of ways to convey learning resources, the incorporation of alternate modalities can be intimidating for those designing curricula. We propose strategies to permit rapid adaptation of curricula to achieve learning in synchronous, asynchronous, or hybrid learning environments. Case studies are a way to engage students in realistic scenarios that contextualize concepts and highlight applications in the life sciences. While case studies are commonly available and adaptable to course goals, the practical considerations of how to deliver and assess cases in online and blended environments can instill panic. Here we review existing resources and our collective experiences creating, adapting, and assessing case materials across different modalities. We discuss the benefits of using case studies and provide tips for implementation. Further, we describe functional examples of a three-step process to prepare cases with defined outcomes for individual student preparation, collaborative learning, and individual student synthesis to create an inclusive learning experience, whether in a traditional or remote learning environment.},
journal = {Journal of Microbiology & Biology Education},
volume = {22},
number = {1},
author = {Bixler, Andrea and Eslinger, Melissa and Kleinschmit, Adam J. and Gaudier-Diaz, Monica M. and Sankar, Usha and Marsteller, Patricia and Goller, Carlos C. and Robertson, Sabrina},
editor = {null}
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.