skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Acoustic Field-Assisted Two-Photon Polymerization Process
Abstract This study successfully integrates acoustic patterning with the Two-Photon Polymerization (TPP) process for printing nanoparticle–polymer composite microstructures with spatially varied nanoparticle compositions. Currently, the TPP process is gaining increasing attention within the engineering community for the direct manufacturing of complex three-dimensional (3D) microstructures. Yet the full potential of TPP manufactured microstructures is limited by the materials used. This study aims to create and demonstrate a novel acoustic field-assisted TPP (A-TPP) process, which can instantaneously pattern and assemble nanoparticles in a liquid droplet, and fabricate anisotropic nanoparticle–polymer composites with spatially controlled particle–polymer material compositions. It was found that the biggest challenge in integrating acoustic particle patterning with the TPP process is that nanoparticles move upon laser irradiation due to the photothermal effect, and hence, the acoustic assembly is distorted during the photopolymerization process. To cure acoustic assembly of nanoparticles in the resin through TPP with the desired nanoparticle patterns, the laser power needs to be carefully tuned so that it is adequate for curing while low enough to prevent the photothermal effect. To address this challenge, this study investigated the threshold laser power for polymerization of TPP resin (Pthr) and photothermal instability of the nanoparticle (Pthp). Patterned nanoparticle–polymer composite microstructures were fabricated using the novel A-TPP process. Experimental results validated the feasibility of the developed acoustic field-assisted TPP process on printing anisotropic composites with spatially controlled material compositions.  more » « less
Award ID(s):
1663399
PAR ID:
10281286
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Manufacturing Science and Engineering
Volume:
143
Issue:
10
ISSN:
1087-1357
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Two‐photon polymerization (TPP) enables the fabrication of intricate 3D microstructures with submicron precision, offering significant potential in biomedical applications like tissue engineering. In such applications, to print materials and structures with defined mechanics, it is crucial to understand how TPP printing parameters impact the material properties in a physiologically relevant liquid environment. Herein, an experimental approach utilizing microscale tensile testing (μTT) for the systematic measurement of TPP‐fabricated microfibers submerged in liquid as a function of printing parameters is introduced. Using a diurethane dimethacrylate‐based resin, the influence of printing parameters on microfiber geometry is first explored, demonstrating cross‐sectional areas ranging from 1 to 36 μm2. Tensile testing reveals Young's moduli between 0.5 and 1.5 GPa and yield strengths from 10 to 60 MPa. The experimental data show an excellent fit with the Ogden hyperelastic polymer model, which enables a detailed analysis of how variations in writing speed, laser power, and printing path influence the mechanical properties of TPP microfibers. The μTT method is also showcased for evaluating multiple commercial resins and for performing cyclic loading experiments. Collectively, this study builds a foundation toward a standardized microscale tensile testing framework to characterize the mechanical properties of TPP printed structures. 
    more » « less
  2. Abstract We demonstrate the use of tip-enhanced Raman spectroscopy (TERS) on polymeric microstructures fabricated by two-photon polymerization direct laser writing (TPP-DLW). Compared to the signal intensity obtained in confocal Raman microscopy, a linear enhancement of almost two times is measured when using TERS. Because the probing volume is much smaller in TERS than in confocal Raman microscopy, the effective signal enhancement is estimated to be ca. 104. We obtain chemical maps of TPP microstructures using TERS with relatively short acquisition times and with high spatial resolution as defined by the metallic tip apex radius of curvature. We take advantage of this high resolution to study the homogeneity of the polymer network in TPP microstructures printed in an acrylic-based resin. We find that the polymer degree of conversion varies by about 30% within a distance of only 100 nm. The combination of high resolution topographical and chemical data delivered by TERS provides an effective analytical tool for studying TPP-DLW materials in a non-destructive way. 
    more » « less
  3. Thermoset polymer composites, known for their outstanding thermal, mechanical, and chemical properties, have found applications in diverse fields, including aerospace and automotive industries. These polymers, once cured, cannot be recycled, making the end-of-life management of these composites very difficult and posing an environmental challenge. Conventional recycling methods are unsuitable for thermosets, forcing their accumulation in landfills and raising environmental concerns. One possible solution to overcome this concern is to use resins or curing agents, or both, made from biodegradable materials. This study explores the fabrication and characterization of polymer composites using a commercially available green curing agent made from biomass. The composite laminates were fabricated using HVARTM (Heated Vacuum Assisted Resin Transfer Molding) process. In this process, heat pads are used to increase the temperature of both the epoxy resin and the plain weave carbon fiber laminate to a desired temperature, providing ease of flow to the resin. Small coupons were cut from the laminate using a water jet machine to study the flexural behavior of the composite in accordance with ASTM testing standards and compared with composite coupons fabricated using conventional epoxy resin. 
    more » « less
  4. Abstract Stimuli‐responsive hydrogels with programmable shapes produced by defined patterns of particles are of great interest for the fabrication of small‐scale soft actuators and robots. Patterning the particles in the hydrogels during fabrication generally requires external magnetic or electric fields, thus limiting the material choice for the particles. Acoustically driven particle manipulation, however, solely depends on the acoustic impedance difference between the particles and the surrounding fluid, making it a more versatile method to spatially control particles. Here, an approach is reported by combining direct acoustic force to align photothermal particles and photolithography to spatially immobilize these alignments within a temperature‐responsive poly(N‐isopropylacrylamide) hydrogel to trigger shape deformation under temperature change and light exposure. The spatial distribution of particles can be tuned by the power and frequency of the acoustic waves. Specifically, changing the spacing between the particle patterns and position alters the bending curvature and direction of this composite hydrogel sheet, respectively. Moreover, the orientation (i.e., relative angle) of the particle alignments with respect to the long axis of laser‐cut hydrogel strips governs the bending behaviors and the subsequent shape deformation by external stimuli. This acousto‐photolithography provides a means of spatiotemporal programming of the internal heterogeneity of composite polymeric systems. 
    more » « less
  5. Abstract Properties of particulate-filled polymer matrix composites are highly dependent on the spatial position, orientation and assembly of the particles throughout the matrix. External fields such as electric and magnetic have been individually used to orient, position and assemble micro and nanoparticles in polymer solutions and their resulting material properties were investigated, but the combined effect of using more than one external field on the material properties has not been studied in detail. Applying different configurations of electric and magnetic fields on geometrically and magnetically anisotropic particulates can produce varying microarchitectures with a range of material properties. Experimentally and with simulations, we systematically probe the effect of combined electric and magnetic fields on the microstructure formation of geometrically and magnetically anisotropic barium hexaferrite (BHF) in polydimethylsiloxane (PDMS). The magnetic and dielectric properties resulting from different microstructures are characterized and microstructure-property relationships are analyzed. Our results demonstrate that a variety of microarchitectures can be produced using multi-field processing depending on the nature of the applied external field. For example, the application of an electric field creates macro-chains where the orientation of the BHF stacks inside the macro-chains is random. On the other hand, application of a magnetic field rotates the BHF stacks within the macro-chain in the direction dictated by the magnetic field. In simulations, the dielectrophoretic, magnetic, and viscous forces and torques acting on the particles show that particle anisotropies are central to the ability to control orientation along the orthogonal magnetic and geometric axes, mirroring experimental results. The authors refer to the ability to manipulate particle orientation along orthogonal axes as ‘orthogonal control’. Using this technique, not only are a variety of microstructures possible, but also a range of dielectric and magnetic properties can result. For example, for 1 vol% BHF-PDMS composites, the experimental dielectric permittivity is found to vary from 2.84 to 5.12 and the squareness ratio (remnant magnetization over saturation magnetization) is found to vary from 0.55 to 0.92 (from 0.52 to 0.99 in simulations) depending on the applied external stimuli. The ability to predict and produce a variety of microstructures with a range of properties from a single material set will be particularly beneficial for resin pool based additive manufacturing and 3D printing. 
    more » « less