ABSTRACT Two‐photon polymerization (TPP) is a powerful technique to create microscale structures with high precision, offering significant potential in tissue engineering and drug delivery. While conventional TPP‐fabricated drug carriers rely on passive encapsulation, these systems often suffer from low payload capacity and diffusion‐controlled release kinetics. To address these challenges, we present the first demonstration of TPP‐printed polyprodrug microstructures, where the therapeutic agent is covalently integrated into the polymer network as the repeating unit itself. Estrogen‐based diacrylate monomers derived from 17β‐estradiol were synthesized via one‐step esterification/transesterification to create a photocurable resin. Curing under flood UV irradiation yielded a rigid thermoset (E′ ∼2.5 GPa at 25°C) with a glass transition temperature of about 50°C. Using TPP, we fabricated various microscale needles (100 × 100 × 400 µm, 2 µm resolution) from this resin, enabling direct printing of intrinsically therapeutic microstructures without post‐processing drug loading. The cured polymer acts as both a structural matrix and a hydrolytically degradable polyprodrug, releasing estradiol through cleavage of ester bonds. By combining covalent drug‐polymer integration with high‐resolution 3D printing, this work establishes a platform for personalized transdermal drug delivery devices with spatially controlled release profiles determined by microstructure design and polymer degradation kinetics.
more »
« less
Acoustic Field-Assisted Two-Photon Polymerization Process
Abstract This study successfully integrates acoustic patterning with the Two-Photon Polymerization (TPP) process for printing nanoparticle–polymer composite microstructures with spatially varied nanoparticle compositions. Currently, the TPP process is gaining increasing attention within the engineering community for the direct manufacturing of complex three-dimensional (3D) microstructures. Yet the full potential of TPP manufactured microstructures is limited by the materials used. This study aims to create and demonstrate a novel acoustic field-assisted TPP (A-TPP) process, which can instantaneously pattern and assemble nanoparticles in a liquid droplet, and fabricate anisotropic nanoparticle–polymer composites with spatially controlled particle–polymer material compositions. It was found that the biggest challenge in integrating acoustic particle patterning with the TPP process is that nanoparticles move upon laser irradiation due to the photothermal effect, and hence, the acoustic assembly is distorted during the photopolymerization process. To cure acoustic assembly of nanoparticles in the resin through TPP with the desired nanoparticle patterns, the laser power needs to be carefully tuned so that it is adequate for curing while low enough to prevent the photothermal effect. To address this challenge, this study investigated the threshold laser power for polymerization of TPP resin (Pthr) and photothermal instability of the nanoparticle (Pthp). Patterned nanoparticle–polymer composite microstructures were fabricated using the novel A-TPP process. Experimental results validated the feasibility of the developed acoustic field-assisted TPP process on printing anisotropic composites with spatially controlled material compositions.
more »
« less
- Award ID(s):
- 1663399
- PAR ID:
- 10281286
- Date Published:
- Journal Name:
- Journal of Manufacturing Science and Engineering
- Volume:
- 143
- Issue:
- 10
- ISSN:
- 1087-1357
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Two‐photon polymerization (TPP) enables the fabrication of intricate 3D microstructures with submicron precision, offering significant potential in biomedical applications like tissue engineering. In such applications, to print materials and structures with defined mechanics, it is crucial to understand how TPP printing parameters impact the material properties in a physiologically relevant liquid environment. Herein, an experimental approach utilizing microscale tensile testing (μTT) for the systematic measurement of TPP‐fabricated microfibers submerged in liquid as a function of printing parameters is introduced. Using a diurethane dimethacrylate‐based resin, the influence of printing parameters on microfiber geometry is first explored, demonstrating cross‐sectional areas ranging from 1 to 36 μm2. Tensile testing reveals Young's moduli between 0.5 and 1.5 GPa and yield strengths from 10 to 60 MPa. The experimental data show an excellent fit with the Ogden hyperelastic polymer model, which enables a detailed analysis of how variations in writing speed, laser power, and printing path influence the mechanical properties of TPP microfibers. The μTT method is also showcased for evaluating multiple commercial resins and for performing cyclic loading experiments. Collectively, this study builds a foundation toward a standardized microscale tensile testing framework to characterize the mechanical properties of TPP printed structures.more » « less
-
Abstract We demonstrate the use of tip-enhanced Raman spectroscopy (TERS) on polymeric microstructures fabricated by two-photon polymerization direct laser writing (TPP-DLW). Compared to the signal intensity obtained in confocal Raman microscopy, a linear enhancement of almost two times is measured when using TERS. Because the probing volume is much smaller in TERS than in confocal Raman microscopy, the effective signal enhancement is estimated to be ca. 104. We obtain chemical maps of TPP microstructures using TERS with relatively short acquisition times and with high spatial resolution as defined by the metallic tip apex radius of curvature. We take advantage of this high resolution to study the homogeneity of the polymer network in TPP microstructures printed in an acrylic-based resin. We find that the polymer degree of conversion varies by about 30% within a distance of only 100 nm. The combination of high resolution topographical and chemical data delivered by TERS provides an effective analytical tool for studying TPP-DLW materials in a non-destructive way.more » « less
-
Thermoset polymer composites, known for their outstanding thermal, mechanical, and chemical properties, have found applications in diverse fields, including aerospace and automotive industries. These polymers, once cured, cannot be recycled, making the end-of-life management of these composites very difficult and posing an environmental challenge. Conventional recycling methods are unsuitable for thermosets, forcing their accumulation in landfills and raising environmental concerns. One possible solution to overcome this concern is to use resins or curing agents, or both, made from biodegradable materials. This study explores the fabrication and characterization of polymer composites using a commercially available green curing agent made from biomass. The composite laminates were fabricated using HVARTM (Heated Vacuum Assisted Resin Transfer Molding) process. In this process, heat pads are used to increase the temperature of both the epoxy resin and the plain weave carbon fiber laminate to a desired temperature, providing ease of flow to the resin. Small coupons were cut from the laminate using a water jet machine to study the flexural behavior of the composite in accordance with ASTM testing standards and compared with composite coupons fabricated using conventional epoxy resin.more » « less
-
Abstract Functionally gradient materials emulate nature's ability to seamlessly blend properties through variations in material composition, unlocking advanced engineering applications such as biomedical devices and high‐performance composites. Additive manufacturing, particularly stereolithography, enables sophisticated 3D geometries with diverse materials. However, current stereolithography‐based multi‐material 3D printing is constrained by time‐intensive material switching and compromised interfacial properties. To overcome these challenges, we present dynamic fluid‐assisted micro continuous liquid interface production (DF‐µCLIP), a high‐speed multi‐material 3D printing platform that integrates varying compositions in a fully continuous fashion. By utilizing the polymerization‐free “dead zone”, vliquid resins are seamlessly replenished within a resin bath equipped with dynamic fluidic channels and a synchronized material supply system. DF‐µCLIP achieves ultra‐fast printing speeds of 90 mm/hour with 7.4 µ m pixel‐1 resolution while enabling on‐the‐fly material transitions. This strategy enhances mechanical strength at multi‐material interface through entangled polymer networks and promotes seamless material transitions between distinct materials ilike fragile hydrogels and rigid polymers, addressing interfacial failure caused by mismatch of swelling behavior. Additionally, dynamic material replenishment with real‐time composition control enables continuous gradient printing instead of the conventional step‐wise controlled gradient. Demonstrations include polymers with gradient color transitions and gradient carbon nanotube (CNT) composites with seamlessly varying conductivity.more » « less
An official website of the United States government

