skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Minimax Bounds for Generalized Pairwise Comparisons
We introduce the General Pairwise Model (GPM), a general parametric framework for pairwise comparison. Under the umbrella of the exponential family, the GPM unifies many pop- ular models with discrete observations, including the Thurstone (Case V), Berry-Terry-Luce (BTL) and Ordinal Models, along with models with continuous observations, such as the Gaussian Pairwise Cardinal Model. Using information theoretic techniques, we establish minimax lower bounds with tight topological dependence. When applied as a special case to the Ordinal Model, our results uniformly improve upon previously known lower bounds and confirms one direction of a conjecture put forth by Shah et al. (2016). Performance guarantees of the MLE for a broad class of GPMs with subgaussian assumptions are given and compared against our lower bounds, showing that in many natural settings the MLE is optimal up to constants. Matching lower and upper bounds (up to constants) are achieved by the Gaussian Pairwise Cardinal Model, suggesting that our lower bounds are best-possible under the few assumptions we adopt.  more » « less
Award ID(s):
1750430
PAR ID:
10281296
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2021 International Conference on Machine Learning (ICML) Workshop on Information-Theoretic Methods for Rigorous, Responsible, and Reliable Machine Learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There are many factors that affect the quality of data received from crowdsourcing, including cognitive biases, varying levels of expertise, and varying subjective scales. This work investigates how the elicitation and integration of multiple modalities of input can enhance the quality of collective estimations. We create a crowdsourced experiment where participants are asked to estimate the number of dots within images in two ways: ordinal (ranking) and cardinal (numerical) estimates. We run our study with 300 participants and test how the efficiency of crowdsourced computation is affected when asking participants to provide ordinal and/or cardinal inputs and how the accuracy of the aggregated outcome is affected when using a variety of aggregation methods. First, we find that more accurate ordinal and cardinal estimations can be achieved by prompting participants to provide both cardinal and ordinal information. Second, we present how accurate collective numerical estimates can be achieved with significantly fewer people when aggregating individual preferences using optimization-based consensus aggregation models. Interestingly, we also find that aggregating cardinal information may yield more accurate ordinal estimates. 
    more » « less
  2. null (Ed.)
    There are many factors that affect the quality of data received from crowdsourcing, including cognitive biases, varying levels of expertise, and varying subjective scales. This work investigates how the elicitation and integration of multiple modalities of input can enhance the quality of collective estimations. We create a crowdsourced experiment where participants are asked to estimate the number of dots within images in two ways: ordinal (ranking) and cardinal (numerical) estimates. We run our study with 300 participants and test how the efficiency of crowdsourced computation is affected when asking participants to provide ordinal and/or cardinal inputs and how the accuracy of the aggregated outcome is affected when using a variety of aggregation methods. First, we find that more accurate ordinal and cardinal estimations can be achieved by prompting participants to provide both cardinal and ordinal information. Second, we present how accurate collective numerical estimates can be achieved with significantly fewer people when aggregating individual preferences using optimization-based consensus aggregation models. Interestingly, we also find that aggregating cardinal information may yield more accurate ordinal estimates. 
    more » « less
  3. Krause, Andreas and (Ed.)
    We provide a theoretical framework for Reinforcement Learning with Human Feedback (RLHF). We show that when the underlying true reward is linear, under both Bradley-Terry-Luce (BTL) model (pairwise comparison) and Plackett-Luce (PL) model ($$K$$-wise comparison), MLE converges under certain semi-norm for the family of linear reward. On the other hand, when training a policy based on the learned reward model, we show that MLE fails while a pessimistic MLE provides policies with good performance under certain coverage assumption. We also show that under the PL model, both the true MLE and a different MLE which splits the $$K$$-wise comparison into pairwise comparisons converge, while the true MLE is asymptotically more efficient. Our results validate the empirical success of the existing RLHF algorithms, and provide new insights for algorithm design. Our analysis can also be applied for the problem of online RLHF and inverse reinforcement learning. 
    more » « less
  4. We study the problem of differentially private stochastic convex optimization (DP-SCO) with heavy-tailed gradients, where we assume a kth-moment bound on the Lipschitz constants of sample functions rather than a uniform bound. We propose a new reduction-based approach that enables us to obtain the first optimal rates (up to logarithmic factors) in the heavy-tailed setting, achieving error G2⋅1n√+Gk⋅(d√nϵ)1−1k under (ϵ,δ)-approximate differential privacy, up to a mild $$\textup{polylog}(\frac{1}{\delta})$$ factor, where G22 and Gkk are the 2nd and kth moment bounds on sample Lipschitz constants, nearly-matching a lower bound of [Lowy and Razaviyayn 2023]. We further give a suite of private algorithms in the heavy-tailed setting which improve upon our basic result under additional assumptions, including an optimal algorithm under a known-Lipschitz constant assumption, a near-linear time algorithm for smooth functions, and an optimal linear time algorithm for smooth generalized linear models. 
    more » « less
  5. We give superpolynomial statistical query (SQ) lower bounds for learning two-hidden-layer ReLU networks with respect to Gaussian inputs in the standard (noise-free) model. No general SQ lower bounds were known for learning ReLU networks of any depth in this setting: previous SQ lower bounds held only for adversarial noise models (agnostic learning) or restricted models such as correlational SQ. Prior work hinted at the impossibility of our result: Vempala and Wilmes showed that general SQ lower bounds cannot apply to any real-valued family of functions that satisfies a simple non-degeneracy condition. To circumvent their result, we refine a lifting procedure due to Daniely and Vardi that reduces Boolean PAC learning problems to Gaussian ones. We show how to extend their technique to other learning models and, in many well-studied cases, obtain a more efficient reduction. As such, we also prove new cryptographic hardness results for PAC learning two-hidden-layer ReLU networks, as well as new lower bounds for learning constant-depth ReLU networks from label queries. 
    more » « less