skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Frequency‐Dependent Behavior of Zonal Jet Variability
Abstract Recent work suggests that storm track diagnostics such as eddy heat fluxes and eddy kinetic energies have very small signatures in the first annular mode of zonal mean zonal wind, suggesting a lack of co‐variability between the locations of the extratropical jet and storm tracks. The frequency‐dependence of this apparent decoupling is explored in ERA‐Interim reanalysis data. The annular modes show similar spatial characteristics in the different frequency ranges considered. Cancellation between the signatures of storm track diagnostics in the leading low‐pass and high‐pass filtered annular modes is evident, partly explaining their small signature in the total. It is shown that at timescales greater than 30 days, the first zonal wind mode describes latitudinal shifts of both the midlatitude jet and its associated storm tracks, and it appears that the persistence of zonal wind anomalies is sustained primarily by a baroclinic feedback.  more » « less
Award ID(s):
1921409
PAR ID:
10453560
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
6
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The annular modes of the extratropical atmosphere have received much attention for quantifying variability of the jet streams and storm tracks, despite the fact that the midlatitude circulation itself does not vary uniformly with longitude. While tropical fluctuations in geopotential height have lower amplitude than in the extratropics, they exhibit stronger zonal coherence, or dynamical annularity. A simple index is developed to characterize zonal‐mean anomalies of the tropical circulation. It reveals that anomalies in geopotential height and zonal wind migrate downward from the upper troposphere to the surface on a time scale of about 10 days. These features are distinguishable from known modes of tropical variability, the Madden‐Julian Oscillation in particular. Evidence from reanalysis and idealized model experiments confirms that this downward migration is quite generic and driven by mechanically forced variations in the strength of the Hadley circulation on subseasonal time scales. 
    more » « less
  2. The midwinter suppression of eddy activity in the North Pacific storm track is a phenomenon that has resisted reproduction in idealized models that are initialized independently of the observed atmosphere. Attempts at explaining it have often focused on local mechanisms that depend on zonal asymmetries, such as effects of topography on the mean flow and eddies. Here an idealized aquaplanet GCM is used to demonstrate that a midwinter suppression can also occur in the activity of a statistically zonally symmetric storm track. For a midwinter suppression to occur, it is necessary that parameters, such as the thermal inertia of the upper ocean and the strength of tropical ocean energy transport, are chosen suitably to produce a pronounced seasonal cycle of the subtropical jet characteristics. If the subtropical jet is sufficiently strong and located close to the midlatitude storm track during midwinter, it dominates the upper-level flow and guides eddies equatorward, away from the low-level area of eddy generation. This inhibits the baroclinic interaction between upper and lower levels within the storm track and weakens eddy activity. However, as the subtropical jet continues to move poleward during late winter in the idealized GCM (and unlike what is observed), eddy activity picks up again, showing that the properties of the subtropical jet that give rise to the midwinter suppression are subtle. The idealized GCM simulations provide a framework within which possible mechanisms giving rise to a midwinter suppression of storm tracks can be investigated systematically. 
    more » « less
  3. Abstract The mechanisms by which clouds impact the variability of the mid‐latitude atmosphere are poorly understood. We use an idealized, dry atmospheric model to investigate the relationship between Atmospheric Cloud Radiative Effects (ACRE) and annular mode persistence. We force the model with time‐varying diabatic heating that mimics the observed ACRE response to the Southern Annular Mode (SAM). Realistic ACRE forcing reduces annular mode persistence by 5 days (−16%), which we attribute to a weakening of low‐frequency eddy forcing via modified low‐level temperature gradients, though this effect is partly compensated by reduced frictional damping due to zonal wind anomalies becoming more top‐heavy. The persistence changes are nonlinear with respect to the amplitude of ACRE forcing, reflecting nonlinearities in the response of the eddy forcing. These results highlight the ACRE's impact on low‐frequency eddy forcing as the dominant cause of changes in annular mode persistence. 
    more » « less
  4. null (Ed.)
    Abstract The variability of the zonal-mean large-scale extratropical circulation is often studied using individual modes obtained from empirical orthogonal function (EOF) analyses. The prevailing reduced-order model of the leading EOF (EOF1) of zonal-mean zonal wind, called the annular mode, consists of an eddy–mean flow interaction mechanism that results in a positive feedback of EOF1 onto itself. However, a few studies have pointed out that under some circumstances in observations and GCMs, strong couplings exist between EOF1 and EOF2 at some lag times, resulting in decaying-oscillatory, or propagating, annular modes. Here, we introduce a reduced-order model for coupled EOF1 and EOF2 that accounts for potential cross-EOF eddy–zonal flow feedbacks. Using the analytical solution of this model, we derive conditions for the existence of the propagating regime based on the feedback strengths. Using this model, and idealized GCMs and stochastic prototypes, we show that cross-EOF feedbacks play an important role in controlling the persistence of the annular modes by setting the frequency of the oscillation. We find that stronger cross-EOF feedbacks lead to less persistent annular modes. Applying the coupled-EOF model to the Southern Hemisphere reanalysis data shows the existence of strong cross-EOF feedbacks. The results highlight the importance of considering the coupling of EOFs and cross-EOF feedbacks to fully understand the natural and forced variability of the zonal-mean large-scale circulation. 
    more » « less
  5. null (Ed.)
    Abstract Southern Ocean (SO) surface winds are essential for ventilating the upper ocean by bringing heat and CO 2 to the ocean interior. The relationships between mixed-layer ventilation, the Southern Annular Mode (SAM), and the storm tracks remain unclear because processes can be governed by short-term wind events as well as long-term means. In this study, observed time-varying 5-day probability density functions (PDFs) of ERA5 surface winds and stresses over the SO are used in a singular value decomposition to derive a linearly independent set of empirical basis functions. The first modes of wind (72% of the total wind variance) and stress (74% of the total stress variance) are highly correlated with a standard SAM index ( r = 0.82) and reflect SAM’s role in driving cyclone intensity and, in turn, extreme westerly winds. This Joint PDFs of zonal and meridional wind show that southerly and less westerly winds associated with strong mixed-layer ventilation are more frequent during short and distinct negative SAM phases. The probability of these short-term events might be related to mid-latitude atmospheric circulation. The second mode describes seasonal changes in the wind variance (16% of the total variance) that are uncorrelated with the first mode. The analysis produces similar results when repeated using 5-day PDFs from a suite of scatterometer products. Differences between wind product PDFs resemble the first mode of the PDFs. Together, these results show a strong correlation between surface stress PDFs and the leading modes of atmospheric variability, suggesting that empirical modes can serve as a novel pathway for understanding differences and variability of surface stress PDFs. 
    more » « less