In this paper, the issue of model uncertainty in safety-critical control is addressed with a data-driven approach. For this purpose, we utilize the structure of an input-output linearization controller based on a nominal model along with a Control Barrier Function and Control Lyapunov Function based Quadratic Program (CBF-CLF-QP). Specifically, we propose a novel reinforcement learning framework which learns the model uncertainty present in the CBF and CLF constraints, as well as other control-affine dynamic constraints in the quadratic program. The trained policy is combined with the nominal model based CBF-CLF-QP, resulting in the Reinforcement Learning based CBF-CLF-QP (RL-CBF-CLF-QP), which addresses the problem of model uncertainty in the safety constraints. The performance of the proposed method is validated by testing it on an underactuated nonlinear bipedal robot walking on randomly spaced stepping stones with one step preview, obtaining stable and safe walking under model uncertainty.
more »
« less
An Inverse Dynamics Approach to Control Lyapunov Functions
With the goal of moving towards implementation of increasingly dynamic behaviors on underactuated systems, this paper presents an optimization-based approach for solving full-body dynamics based controllers on underactuated bipedal robots. The primary focus of this paper is on the development of an alternative approach to the implementation of controllers utilizing control Lyapunov function based quadratic programs. This approach utilizes many of the desirable aspects from successful inverse dynamics based controllers in the literature, while also incorporating a variant of control Lyapunov functions that renders better convergence in the context of tracking outputs. The principal benefits of this formulation include a greater ability to add costs which regulate the resulting behavior of the robot. In addition, the model error-prone inertia matrix is used only once, in a non-inverted form. The result is a successful demonstration of the controller for walking in simulation, and applied on hardware in real-time for dynamic crouching.
more »
« less
- PAR ID:
- 10281524
- Date Published:
- Journal Name:
- 2020 American Control Conference (ACC)
- Page Range / eLocation ID:
- 2444 to 2451
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Underactuation is a core challenge associated with controlling soft and continuum robots, which possess theoretically infinite degrees of freedom, but few actuators. However, m actuators may still be used to control a dynamic soft robot in an m-dimensional output task space. In this paper we develop a task-space control approach for planar continuum robots that is robust to modeling error and requires very little sensor information. The controller is based on a highly underactuated discrete rod mechanics model in maximal coordinates and does not require conversion to a classical robot dynamics model form. This promotes straightforward control design, implementation and efficiency. We perform input-output feedback linearization on this model, apply sliding mode control to increase robustness, and formulate an observer to estimate the full state from sparse output measurements. Simulation results show exact task-space reference tracking behavior can be achieved even in the presence of significant modeling error, inaccurate initial conditions, and output-only sensing.more » « less
-
Abstract External and internal convertible (EIC) form-based motion control is one of the effective designs of simultaneous trajectory tracking and balance for underactuated balance robots. Under certain conditions, the EIC-based control design is shown to lead to uncontrolled robot motion. To overcome this issue, we present a Gaussian process (GP)-based data-driven learning control for underactuated balance robots with the EIC modeling structure. Two GP-based learning controllers are presented by using the EIC property. The partial EIC (PEIC)-based control design partitions the robotic dynamics into a fully actuated subsystem and a reduced-order underactuated subsystem. The null-space EIC (NEIC)-based control compensates for the uncontrolled motion in a subspace, while the other closed-loop dynamics are not affected. Under the PEIC- and NEIC-based, the tracking and balance tasks are guaranteed, and convergence rate and bounded errors are achieved without causing any uncontrolled motion by the original EIC-based control. We validate the results and demonstrate the GP-based learning control design using two inverted pendulum platforms.more » « less
-
Designing stabilizing controllers is a fundamental challenge in autonomous systems, particularly for high-dimensional, nonlinear systems that can hardly be accurately modeled with differential equations. The Lyapunov theory offers a solution for stabilizing control systems, still, current methods relying on Lyapunov functions require access to complete dynamics or samples of system executions throughout the entire state space. Consequently, they are impractical for high-dimensional systems. This paper introduces a novel framework, LYapunov-Guided Exploration (LYGE), for learning stabilizing controllers tailored to high-dimensional, unknown systems. LYGE employs Lyapunov theory to iteratively guide the search for samples during exploration while simultaneously learning the local system dynamics, control policy, and Lyapunov functions. We demonstrate its scalability on highly complex systems, including a high-fidelity F-16 jet model featuring a 16D state space and a 4D input space. Experiments indicate that, compared to prior works in reinforcement learning, imitation learning, and neural certificates, LYGE reduces the distance to the goal by 50% while requiring only 5% to 32% of the samples. Furthermore, we demonstrate that our algorithm can be extended to learn controllers guided by other certificate functions for unknown systems.more » « less
-
The paper considers the application of feedback control to orbital transfer maneuvers subject to constraints on the spacecraft thrust and on avoiding the collision with the primary body. Incremental reference governor (IRG) strategies are developed to complement the nominal Lyapunov controller, derived based on Gauss variational equations, and enforce the constraints. Simulation results are reported that demonstrate the successful constrained orbital transfer maneuvers with the proposed approach. A Lyapunov function based IRG and a prediction‐based IRG are compared. While both implementation successfully enforce the constraints, a prediction‐based IRG is shown to result in faster maneuvers.more » « less