Abstract Bikebot (i.e., bicycle-based robot) is a class of underactuated balance robotic systems that require simultaneous trajectory tracking and balance control tasks. We present a tracking and balance control design of an autonomous bikebot. The external-internal convertible structure of the bikebot dynamics is used to design a causal feedback control to achieve both the tracking and balance tasks. A balance equilibrium manifold is used to define and capture the platform balance profiles and coupled interaction with the trajectory tracking performance. To achieve fully autonomous navigation, a gyrobalancer actuation is integrated with the steering and velocity control for stationary platform balance and stationary-moving switching. Stability and convergence analyses are presented to guarantee the control performance. Extensive experiments are presented to validate and demonstrate the autonomous control design. We also compare the autonomous control performance with human riding experiments and similar action strategies are found between them.
more »
« less
This content will become publicly available on November 1, 2025
Gaussian Process-Based Learning Control of Underactuated Balance Robots With an External and Internal Convertible Modeling Structure
Abstract External and internal convertible (EIC) form-based motion control is one of the effective designs of simultaneous trajectory tracking and balance for underactuated balance robots. Under certain conditions, the EIC-based control design is shown to lead to uncontrolled robot motion. To overcome this issue, we present a Gaussian process (GP)-based data-driven learning control for underactuated balance robots with the EIC modeling structure. Two GP-based learning controllers are presented by using the EIC property. The partial EIC (PEIC)-based control design partitions the robotic dynamics into a fully actuated subsystem and a reduced-order underactuated subsystem. The null-space EIC (NEIC)-based control compensates for the uncontrolled motion in a subspace, while the other closed-loop dynamics are not affected. Under the PEIC- and NEIC-based, the tracking and balance tasks are guaranteed, and convergence rate and bounded errors are achieved without causing any uncontrolled motion by the original EIC-based control. We validate the results and demonstrate the GP-based learning control design using two inverted pendulum platforms.
more »
« less
- Award ID(s):
- 1932370
- PAR ID:
- 10556131
- Publisher / Repository:
- ASME
- Date Published:
- Journal Name:
- Journal of Dynamic Systems, Measurement, and Control
- Volume:
- 146
- Issue:
- 6
- ISSN:
- 0022-0434
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)With the goal of moving towards implementation of increasingly dynamic behaviors on underactuated systems, this paper presents an optimization-based approach for solving full-body dynamics based controllers on underactuated bipedal robots. The primary focus of this paper is on the development of an alternative approach to the implementation of controllers utilizing control Lyapunov function based quadratic programs. This approach utilizes many of the desirable aspects from successful inverse dynamics based controllers in the literature, while also incorporating a variant of control Lyapunov functions that renders better convergence in the context of tracking outputs. The principal benefits of this formulation include a greater ability to add costs which regulate the resulting behavior of the robot. In addition, the model error-prone inertia matrix is used only once, in a non-inverted form. The result is a successful demonstration of the controller for walking in simulation, and applied on hardware in real-time for dynamic crouching.more » « less
-
Underactuation is a core challenge associated with controlling soft and continuum robots, which possess theoretically infinite degrees of freedom, but few actuators. However, m actuators may still be used to control a dynamic soft robot in an m-dimensional output task space. In this paper we develop a task-space control approach for planar continuum robots that is robust to modeling error and requires very little sensor information. The controller is based on a highly underactuated discrete rod mechanics model in maximal coordinates and does not require conversion to a classical robot dynamics model form. This promotes straightforward control design, implementation and efficiency. We perform input-output feedback linearization on this model, apply sliding mode control to increase robustness, and formulate an observer to estimate the full state from sparse output measurements. Simulation results show exact task-space reference tracking behavior can be achieved even in the presence of significant modeling error, inaccurate initial conditions, and output-only sensing.more » « less
-
Abstract Accurate control of a humanoid robot's global position (i.e., its three-dimensional (3D) position in the world) is critical to the reliable execution of high-risk tasks such as avoiding collision with pedestrians in a crowded environment. This paper introduces a time-based nonlinear control approach that achieves accurate global-position tracking (GPT) for multi-domain bipedal walking. Deriving a tracking controller for bipedal robots is challenging due to the highly complex robot dynamics that are time-varying and hybrid, especially for multi-domain walking that involves multiple phases/domains of full actuation, over actuation, and underactuation. To tackle this challenge, we introduce a continuous-phase GPT control law for multi-domain walking, which provably ensures the exponential convergence of the entire error state within the full and over actuation domains and that of the directly regulated error state within the underactuation domain. We then construct sufficient multiple-Lyapunov stability conditions for the hybrid multi-domain tracking error system under the proposed GPT control law. We illustrate the proposed controller design through both three-domain walking with all motors activated and two-domain gait with inactive ankle motors. Simulations of a ROBOTIS OP3 bipedal humanoid robot demonstrate the satisfactory accuracy and convergence rate of the proposed control approach under two different cases of multi-domain walking as well as various walking speed and desired paths.more » « less
-
Abstract This paper introduces an adaptive robust trajectory tracking controller design to provably realize stable bipedal robotic walking under parametric and unmodeled uncertainties. Deriving such a controller is challenging mainly because of the highly complex bipedal walking dynamics that are hybrid and involve nonlinear, uncontrolled state-triggered jumps. The main contribution of the study is the synthesis of a continuous-phase adaptive robust tracking control law for hybrid models of bipedal robotic walking by incorporating the construction of multiple Lyapunov functions into the control Lyapunov function. The evolution of the Lyapunov function across the state-triggered jumps is explicitly analyzed to construct sufficient conditions that guide the proposed control design for provably guaranteeing the stability and tracking the performance of the hybrid system in the presence of uncertainties. Simulation results on fully actuated bipedal robotic walking validate the effectiveness of the proposed approach in walking stabilization under uncertainties.more » « less
An official website of the United States government
