Hybrid locomotion, which combines multiple modalities of locomotion within a single robot, enables robots to carry out complex tasks in diverse environments. This paper presents a novel method for planning multi-modal locomotion trajectories using approximate dynamic programming. We formulate this problem as a shortest-path search through a state-space graph, where the edge cost is assigned as optimal transport cost along each segment. This cost is approximated from batches of offline trajectory optimizations, which allows the complex effects of vehicle under-actuation and dynamic constraints to be approximately captured in a tractable way. Our method is illustrated on a hybrid double-integrator, an amphibious robot, and a flying-driving drone, showing the practicality of the approach.
more »
« less
Energy-Efficient Motion Planning for Multi-Modal Hybrid Locomotion
Hybrid locomotion, which combines multiple modalities of locomotion within a single robot, enables robots to carry out complex tasks in diverse environments. This paper presents a novel method for planning multi-modal locomotion trajectories using approximate dynamic programming. We formulate this problem as a shortest-path search through a state-space graph, where the edge cost is assigned as optimal transport cost along each segment. This cost is approximated from batches of offline trajectory optimizations, which allows the complex effects of vehicle under-actuation and dynamic constraints to be approximately captured in a tractable way. Our method is illustrated on a hybrid double-integrator, an amphibious robot, and a flying-driving drone, showing the practicality of the approach.
more »
« less
- Award ID(s):
- 1932091
- PAR ID:
- 10281538
- Date Published:
- Journal Name:
- IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
- Page Range / eLocation ID:
- 7027 to 7033
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Can we design motion primitives for complex legged systems uniformly for different terrain types without neglecting modeling details? This paper presents a method for rapidly generating quadrupedal locomotion on sloped terrains-from modeling to gait generation, to hardware demonstration. At the core of this approach is the observation that a quadrupedal robot can be exactly decomposed into coupled bipedal robots. Formally, this is represented through the framework of coupled control systems, wherein isolated subsystems interact through coupling constraints. We demonstrate this concept in the context of quadrupeds and use it to reduce the gait planning problem for uneven terrains to bipedal walking generation via hybrid zero dynamics. This reduction method allows for the formulation of a nonlinear optimization problem that leverages low-dimensional bipedal representations to generate dynamic walking gaits on slopes for the full-order quadrupedal robot dynamics. The result is the ability to rapidly generate quadrupedal walking gaits on a variety of slopes. We demonstrate these walking behaviors on the Vision 60 quadrupedal robot; in simulation, via walking on a range of sloped terrains of 13°, 15°, 20°, 25°, and, experimentally, through the successful locomotion of 13° and 20° ~ 25° sloped outdoor grasslands.more » « less
-
We present a method that finds locomanipulation plans that perform simultaneous locomotion and manipulation of objects for a desired end-effector trajectory. Key to our approach is to consider an injective locomotion constraint manifold that defines the locomotion scheme of the robot and then using this constraint manifold to search for admissible manipulation trajectories. The problem is formulated as a weighted-A* graph search whose planner output is a sequence of contact transitions and a path progression trajectory to construct the whole-body kinodynamic locomanipulation plan. We also provide a method for computing, visualizing, and learning the locomanipulability region, which is used to efficiently evaluate the edge transition feasibility during the graph search. Numerical simulations are performed with the NASA Valkyrie robot platform that utilizes a dynamic locomotion approach, called the divergent-component-of-motion (DCM), on two example locomanipulation scenarios.more » « less
-
null (Ed.)This paper systematically decomposes a quadrupedal robot into bipeds to rapidly generate walking gaits and then recomposes these gaits to obtain quadrupedal locomotion. We begin by decomposing the full-order, nonlinear and hybrid dynamics of a three-dimensional quadrupedal robot, including its continuous and discrete dynamics, into two bipedal systems that are subject to external forces. Using the hybrid zero dynamics (HZD) framework, gaits for these bipedal robots can be rapidly generated (on the order of seconds) along with corresponding controllers. The decomposition is achieved in such a way that the bipedal walking gaits and controllers can be composed to yield dynamic walking gaits for the original quadrupedal robot - the result is the rapid generation of dynamic quadruped gaits utilizing the full-order dynamics. This methodology is demonstrated through the rapid generation (3.96 seconds on average) of four stepping-in-place gaits and one diagonally symmetric ambling gait at 0.35 m/s on a quadrupedal robot - the Vision 60, with 36 state variables and 12 control inputs - both in simulation and through outdoor experiments. This suggested a new approach for fast quadrupedal trajectory planning using full-body dynamics, without the need for empirical model simplification, wherein methods from dynamic bipedal walking can be directly applied to quadrupeds.more » « less
-
This study proposes a novel planning framework based on a model predictive control formulation that incorporates signal temporal logic (STL) specifications for task completion guarantees and robustness quantification. This marks the first-ever study to apply STL-guided trajectory optimization for bipedal locomotion push recovery, where the robot experiences unexpected disturbances. Existing recovery strategies often struggle with complex task logic reasoning and locomotion robustness evaluation, making them susceptible to failures due to inappropriate recovery strategies or insufficient robustness. To address this issue, the STL-guided framework generates optimal and safe recovery trajectories that simultaneously satisfy the task specification and maximize the locomotion robustness. Our framework outperforms a state-of-the-art locomotion controller in a high-fidelity dynamic simulation, especially in scenarios involving crossed-leg maneuvers. Furthermore, it demonstrates versatility in tasks such as locomotion on stepping stones, where the robot must select from a set of disjointed footholds to maneuver successfully.more » « less