Abstract A large number of genetic variations have been identified to be associated with Alzheimer’s disease (AD) and related quantitative traits. However, majority of existing studies focused on single types of omics data, lacking the power of generating a community including multi-omic markers and their functional connections. Because of this, the immense value of multi-omics data on AD has attracted much attention. Leveraging genomic, transcriptomic and proteomic data, and their backbone network through functional relations, we proposed a modularity-constrained logistic regression model to mine the association between disease status and a group of functionally connected multi-omic features, i.e. single-nucleotide polymorphisms (SNPs), genes and proteins. This new model was applied to the real data collected from the frontal cortex tissue in the Religious Orders Study and Memory and Aging Project cohort. Compared with other state-of-art methods, it provided overall the best prediction performance during cross-validation. This new method helped identify a group of densely connected SNPs, genes and proteins predictive of AD status. These SNPs are mostly expression quantitative trait loci in the frontal region. Brain-wide gene expression profile of these genes and proteins were highly correlated with the brain activation map of ‘vision’, a brain function partly controlled by frontal cortex. These genes and proteins were also found to be associated with the amyloid deposition, cortical volume and average thickness of frontal regions. Taken together, these results suggested a potential pathway underlying the development of AD from SNPs to gene expression, protein expression and ultimately brain functional and structural changes.
more »
« less
Frontal Functional Network Disruption Associated with Amyotrophic Lateral Sclerosis: An fNIRS-Based Minimum Spanning Tree Analysis
Recent evidence increasingly associates network disruption in brain organization with multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), a rare terminal disease. However, the comparability of brain network characteristics across different studies remains a challenge for conventional graph theoretical methods. One suggested method to address this issue is minimum spanning tree (MST) analysis, which provides a less biased comparison. Here, we assessed the novel application of MST network analysis to hemodynamic responses recorded by functional near-infrared spectroscopy (fNIRS) neuroimaging modality, during an activity-based paradigm to investigate hypothetical disruptions in frontal functional brain network topology as a marker of the executive dysfunction, one of the most prevalent cognitive deficit reported across ALS studies. We analyzed data recorded from nine participants with ALS and ten age-matched healthy controls by first estimating functional connectivity, using phase-locking value (PLV) analysis, and then constructing the corresponding individual and group MSTs. Our results showed significant between-group differences in several MST topological properties, including leaf fraction, maximum degree, diameter, eccentricity, and degree divergence. We further observed a global shift toward more centralized frontal network organizations in the ALS group, interpreted as a more random or dysregulated network in this cohort. Moreover, the similarity analysis demonstrated marginally significantly increased overlap in the individual MSTs from the control group, implying a reference network with lower topological variation in the healthy cohort. Our nodal analysis characterized the main local hubs in healthy controls as distributed more evenly over the frontal cortex, with slightly higher occurrence in the left prefrontal cortex (PFC), while in the ALS group, the most frequent hubs were asymmetrical, observed primarily in the right prefrontal cortex. Furthermore, it was demonstrated that the global PLV (gPLV) synchronization metric is associated with disease progression, and a few topological properties, including leaf fraction and tree hierarchy, are linked to disease duration. These results suggest that dysregulation, centralization, and asymmetry of the hemodynamic-based frontal functional network during activity are potential neuro-topological markers of ALS pathogenesis. Our findings can possibly support new bedside assessments of the functional status of ALS’ brain network and could hypothetically extend to applications in other neurodegenerative diseases.
more »
« less
- Award ID(s):
- 1913492
- PAR ID:
- 10281596
- Date Published:
- Journal Name:
- Frontiers in Neuroscience
- Volume:
- 14
- ISSN:
- 1662-453X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper describes a group-level analysis of 14 subjects with prefrontal cortex (pFC) lesions and 20 healthy controls performing multiple lateralized visuospatial working memory (WM) trials. Using effective brain connectivity measures inferred from directed information (DI) during memory encoding, we first show that DI features can correctly classify 18 control subjects and 11 subjects with pFC lesions, providing an overall accuracy of 85.3%. Second, we show that differential DI, the change in DI during the encoding phase from pretrial, can successfully overcome inter-subject variability and correctly identify the class of all 34 subjects (100% accuracy). These accuracy results are based on two-thirds majority thresholding among all trials. Finally, we use Welch’s t-test to identify the crucial differences in the two classes’ sub-networks responsible for memory encoding. While the inflow of information to the prefrontal region is significant among subjects with pFC lesions, the outflow from the prefrontal to the frontal and central regions is diminished compared to the control subjects. We further identify specific neural pathways that are exclusively activated for each group during the encoding phase.more » « less
-
This paper analyzes the scalp electroencephalogram (EEG) recorded from 14 human subjects with pFC lesions and 20 healthy controls while performing lateral visuospatial working memory tasks to identify the directional brain networks responsible for memory encoding. First, we show that effective connectivity features using directed information (DI) are more accurate and robust than the functional connectivity measure of correlation coefficients in classifying the memory encoding stage from the pretrial phase, with a mean accuracy of 99.36%. Second, we identify the functional segregation of memory encoding to a much smaller sub-network by showing that the top 2.5% of the observed DI features can distinguish memory encoding from the pretrial phase with a mean accuracy of 93.1%. Finally, using graph features, we reveal the increased significance of frontocentral, centroparietal, and temporal regions in memory encoding for subjects with pFC lesions and reduced information flow in the prefrontal, frontal and parietooccipital areas when compared to healthy control.more » « less
-
null (Ed.)Abstract This paper presents the results of studying the brain activations of 30 engineering students when using three different design concept generation techniques: brainstorming, morphological analysis, and TRIZ. Changes in students’ brain activation in the prefrontal cortex were measured using functional near-infrared spectroscopy. The results are based on the area under the curve analysis of oxygenated hemodynamic response as well as an assessment of functional connectivity using Pearson’s correlation to compare students’ cognitive brain activations using these three different ideation techniques. The results indicate that brainstorming and morphological analysis demand more cognitive activation across the prefrontal cortex (PFC) compared to TRIZ. The highest cognitive activation when brainstorming and using morphological analysis is in the right dorsolateral PFC (DLPFC) and ventrolateral PFC. These regions are associated with divergent thinking and ill-defined problem-solving. TRIZ produces more cognitive activation in the left DLPFC. This region is associated with convergent thinking and making judgments. Morphological analysis and TRIZ also enable greater coordination (i.e., synchronized activation) between brain regions. These findings offer new evidence that structured techniques like TRIZ reduce cognitive activation, change patterns of activation and increase coordination between regions in the brain.more » « less
-
Abstract In this work, we focus on explicitly nonlinear relationships in functional networks. We introduce a technique using normalized mutual information (NMI) that calculates the nonlinear relationship between different brain regions. We demonstrate our proposed approach using simulated data and then apply it to a dataset previously studied by Damaraju et al. This resting‐state fMRI data included 151 schizophrenia patients and 163 age‐ and gender‐matched healthy controls. We first decomposed these data using group independent component analysis (ICA) and yielded 47 functionally relevant intrinsic connectivity networks. Our analysis showed a modularized nonlinear relationship among brain functional networks that was particularly noticeable in the sensory and visual cortex. Interestingly, the modularity appears both meaningful and distinct from that revealed by the linear approach. Group analysis identified significant differences in explicitly nonlinear functional network connectivity (FNC) between schizophrenia patients and healthy controls, particularly in the visual cortex, with controls showing more nonlinearity (i.e., higher normalized mutual information between time courses with linear relationships removed) in most cases. Certain domains, including subcortical and auditory, showed relatively less nonlinear FNC (i.e., lower normalized mutual information), whereas links between the visual and other domains showed evidence of substantial nonlinear and modular properties. Overall, these results suggest that quantifying nonlinear dependencies of functional connectivity may provide a complementary and potentially important tool for studying brain function by exposing relevant variation that is typically ignored. Beyond this, we propose a method that captures both linear and nonlinear effects in a “boosted” approach. This method increases the sensitivity to group differences compared to the standard linear approach, at the cost of being unable to separate linear and nonlinear effects.more » « less