skip to main content


Search for: All records

Award ID contains: 1913492

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Graph theoretic approaches in analyzing spatiotemporal dynamics of brain activities are under-studied but could be very promising directions in developing effective brain–computer interfaces (BCIs). Many existing BCI systems use electroencephalogram (EEG) signals to record and decode human neural activities noninvasively. Often, however, the features extracted from the EEG signals ignore the topological information hidden in the EEG temporal dynamics. Moreover, existing graph theoretic approaches are mostly used to reveal the topological patterns of brain functional networks based on synchronization between signals from distinctive spatial regions, instead of interdependence between states at different timestamps. In this study, we present a robust fold-wise hyperparameter optimization framework utilizing a series of conventional graph-based measurements combined with spectral graph features and investigate its discriminative performance on classification of a designed mental task in 6 participants with amyotrophic lateral sclerosis (ALS). Across all of our participants, we reached an average accuracy of 71.1% ± 4.5% for mental task classification by combining the global graph-based measurements and the spectral graph features, higher than the conventional non-graph based feature performance (67.1% ± 7.5%). Compared to using either one of the graphic features (66.3% ± 6.5% for the eigenvalues and 65.9% ± 5.2% for the global graph features), our feature combination strategy shows considerable improvement in both accuracy and robustness performance. Our results indicate the feasibility and advantage of the presented fold-wise optimization framework utilizing graph-based features in BCI systems targeted at end-users. 
    more » « less
  2. Multimodal data fusion is one of the current primary neuroimaging research directions to overcome the fundamental limitations of individual modalities by exploiting complementary information from different modalities. Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) are especially compelling modalities due to their potentially complementary features reflecting the electro-hemodynamic characteristics of neural responses. However, the current multimodal studies lack a comprehensive systematic approach to properly merge the complementary features from their multimodal data. Identifying a systematic approach to properly fuse EEG-fNIRS data and exploit their complementary potential is crucial in improving performance. This paper proposes a framework for classifying fused EEG-fNIRS data at the feature level, relying on a mutual information-based feature selection approach with respect to the complementarity between features. The goal is to optimize the complementarity, redundancy and relevance between multimodal features with respect to the class labels as belonging to a pathological condition or healthy control. Nine amyotrophic lateral sclerosis (ALS) patients and nine controls underwent multimodal data recording during a visuo-mental task. Multiple spectral and temporal features were extracted and fed to a feature selection algorithm followed by a classifier, which selected the optimized subset of features through a cross-validation process. The results demonstrated considerably improved hybrid classification performance compared to the individual modalities and compared to conventional classification without feature selection, suggesting a potential efficacy of our proposed framework for wider neuro-clinical applications.

     
    more » « less
  3. null (Ed.)
    Recent evidence increasingly associates network disruption in brain organization with multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), a rare terminal disease. However, the comparability of brain network characteristics across different studies remains a challenge for conventional graph theoretical methods. One suggested method to address this issue is minimum spanning tree (MST) analysis, which provides a less biased comparison. Here, we assessed the novel application of MST network analysis to hemodynamic responses recorded by functional near-infrared spectroscopy (fNIRS) neuroimaging modality, during an activity-based paradigm to investigate hypothetical disruptions in frontal functional brain network topology as a marker of the executive dysfunction, one of the most prevalent cognitive deficit reported across ALS studies. We analyzed data recorded from nine participants with ALS and ten age-matched healthy controls by first estimating functional connectivity, using phase-locking value (PLV) analysis, and then constructing the corresponding individual and group MSTs. Our results showed significant between-group differences in several MST topological properties, including leaf fraction, maximum degree, diameter, eccentricity, and degree divergence. We further observed a global shift toward more centralized frontal network organizations in the ALS group, interpreted as a more random or dysregulated network in this cohort. Moreover, the similarity analysis demonstrated marginally significantly increased overlap in the individual MSTs from the control group, implying a reference network with lower topological variation in the healthy cohort. Our nodal analysis characterized the main local hubs in healthy controls as distributed more evenly over the frontal cortex, with slightly higher occurrence in the left prefrontal cortex (PFC), while in the ALS group, the most frequent hubs were asymmetrical, observed primarily in the right prefrontal cortex. Furthermore, it was demonstrated that the global PLV (gPLV) synchronization metric is associated with disease progression, and a few topological properties, including leaf fraction and tree hierarchy, are linked to disease duration. These results suggest that dysregulation, centralization, and asymmetry of the hemodynamic-based frontal functional network during activity are potential neuro-topological markers of ALS pathogenesis. Our findings can possibly support new bedside assessments of the functional status of ALS’ brain network and could hypothetically extend to applications in other neurodegenerative diseases. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)