skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Expedition 385T Preliminary Report: Panama Basin Crustal Architecture and Deep Biosphere: Revisiting Holes 504B and 896A
International Ocean Discovery Program (IODP) Expedition 385T aimed to take advantage of a transit of the R/V JOIDES Resolution from Antofagasta, Chile, to San Diego, California (USA), to accomplish new sampling and data collection from legacy borehole observatories in Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) Holes 504B and 896A on the southern flank of the Costa Rica Rift. In addition, the US Science Support Program organized the participation of 3 Outreach Officers to evaluate the performance of the JOIDES Resolution Outreach Officer program as well as 2 educators and 12 undergraduate students for a shipboard “JR Academy.” Our scientific objectives were to collect (1) new Formation MicroScanner logs from Hole 504B for improving lithologic interpretations of crustal architecture at this archetype deep oceanic crust hole and (2) fluid samples from both holes for evaluating the crustal deep biosphere in deep and warm oceanic crust. These operations in Holes 504B and 896A have direct relevance to Challenges 5, 6, 9, 10, 13, and 14 of the IODP 2013–2023 Science Plan. Accomplishing both of these scientific objectives required the removal of old wireline CORK observatories, including associated inflatable packers that were installed in the cased boreholes in 2001. The fluid sampling plan also included testing a new Multi-Temperature Fluid Sampler. Despite successfully removing the CORK wellhead platforms from both holes, we were unable to remove the packers stuck in casing at both locations after 48 h of milling operations in Hole 504B and 2 h of milling operations in Hole 896A, thus precluding accomplishing any of the scientific objectives of the expedition. We provide an assessment of the final state of the holes and recommendations for possible future operations.  more » « less
Award ID(s):
1326927
PAR ID:
10281812
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Preliminary report
Volume:
385T
ISSN:
2372-9562
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 385T will revisit two Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) legacy sites—Holes 504B and 896A on the Costa Rica Rift flank—to advance lithostratigraphic, hydrogeological, and deep biosphere studies of upper oceanic crust. Hole 504B has served as a standard reference site for upper oceanic crust for decades despite low core recovery during drilling operations. Hole 896A serves as an analog site of crustal alteration for examining biogeography in the crustal deep biosphere. During Expedition 385T, we will advance lithostratigraphic records of in situ crustal architecture through Formation MicroScanner (FMS) logging, with priority for these operations in Hole 504B. The new logs from Hole 504B will reveal whether unrecovered intervals are highly fractured and/or brecciated and whether alteration style and intensity are correlated to volcanic architecture, which will allow for assessment of the hypothesis that hydrothermal alteration and mineralization style are spreading-rate dependent. We will also advance crustal hydrogeological and deep biosphere research through temperature logging and water sampling in both holes, with priority for these operations in Hole 896A. The new FMS-based lithostratigraphy coupled with new fluid assessment will also allow for improvements on the thermal limits of microbial life and seawater-basalt reactions. These operations in Holes 504B and 896A have direct relevance to Challenges 5, 6, 9, 10, 13, and 14 of the IODP 2013–2023 Science Plan. To achieve these data and sample recoveries from these legacy sites, existing wireline observatories installed in both holes will be removed and the remaining cased holes will be left open for possible future installation of next-generation observatories. The expedition will be implemented as an abbreviated (10 operational days) expedition with no new coring. 
    more » « less
  2. null (Ed.)
    Expedition 384 is scheduled to begin in Kristiansand, Norway, on 20 July 2020 and end in Las Palmas, Spain, on 5 September and is dedicated to engineering testing as it relates to deep (>1 km) drilling and coring in igneous ocean crust. The Deep Crustal Drilling Engineering Working Group convened in 2017 to discuss recent issues with crustal drilling and recommended a number of technologies and tools for potential testing. The JOIDES Resolution Facility Board further prioritized the testing opportunities in 2018. The top priority of all recommendations was an evaluation of drilling and coring bits because coring bit wear, tear, and failure is the prevalent issue in deep crustal drilling attempts, requiring an excessive amount of fishing and hole cleaning time. The primary objective of Expedition 384 is to drill “pilot holes” using three types of drill bits: two tungsten carbide insert (TCI) tricone bits, a polycrystalline diamond compact (PDC) bit, and a TCI/PDC hybrid bit. Additional tests include the deployment of an underreamer as well as a PDC coring bit to obtain samples for engineering testing. The results may lead to an initiative toward developing a better performing coring bit for future use by the International Ocean Discovery Program (IODP). The site location for these tests has evolved with the multiple postponements of Expedition 384 for various reasons. The current primary site is Proposed Site REYK-13A (1520 m water depth) from postponed IODP Expedition 395; this site has ~210 m of recent to Pliocene clay or ooze overlaying basaltic basement that has not been drilled or cored to date. The plan is to drill 6 holes to ~100 m into the basement each. A second site was selected for operations should time and equipment remain to do so: Integrated Ocean Drilling Program Site U1309 (1653 m water depth), where basaltic and gabbroic rocks are exposed at the seafloor, has been cored to 102 m in Hole U1309B and 1415 m in Hole U1309D. The plan is drill one hole to ~200 m. Operations at Sites REYK-13A and U1309 are projected to take 22.4 days. Additional operating time became available for Expedition 384 as a result of the latest schedule changes. A secondary objective therefore includes the assessment and potential improvement of current procedures for advanced piston corer (APC) core orientation. A total of 4.6 days is allocated to triple-coring the top 70 m of sediment at Proposed Site REYK-6A (postponed Expedition 395), located 54 nm east of Proposed Site REYK-13A. 
    more » « less
  3. null (Ed.)
    The objective of International Ocean Discovery Program (IODP) Expedition 384 was to carry out engineering tests with the goal of improving the chances of success in deep (>1 km) drilling and coring in igneous ocean crust. A wide range of tools and technologies for potential testing were proposed by the Deep Crustal Drilling Engineering Working Group in 2017 based on reports from recent crustal drilling expeditions. The JOIDES Resolution Facility Board further prioritized the testing opportunities in 2018. The top priority of all recommendations was an evaluation of drilling and coring bits because rate of penetration and bit wear and tear are the prevalent issue in deep crustal drilling attempts, and bit failures often require an excessive amount of fishing and hole cleaning time. The plan included drilling in basalt with three different types of drill bits: a tungsten carbide insert (TCI) tricone bit, a polycrystalline diamond compact (PDC) bit, and a more novel TCI/PDC hybrid bit. In addition, a TCI bit was to be paired with an underreamer with expanding cutter blocks instead of extending arms. Finally, a type of rotary core barrel (RCB) PDC coring bit that was acquired for the R/V JOIDES Resolution several years ago but never deployed would also be given a test run. A second objective was added when additional operating time became available for Expedition 384 as a result of the latest schedule changes. This objective included the assessment and potential improvement of current procedures for advanced piston corer (APC) core orientation. Expedition 384 began in Kristiansand, Norway, on 20 July 2020. The location for tests was based on various factors, including the JOIDES Resolution's location at the time, our inability to obtain territorial clearance in a short period of time, and a suitable combination of sediment and igneous rock for the drilling and coring operations. IODP Expedition 395, which was postponed due to the COVID-19 pandemic, had proposed sites that were suitable for our testing and offered the opportunity to carry out some serendipitous sampling, logging, and casing work for science. We first spent 3 days triple coring the top 70 m of sediment at Site U1554 (Proposed Site REYK-6A) to obtain cores for evaluating potential problems with the magnetic core orientation tools and for assessing other potential sources of errors that might explain prior anomalous core orientation results. Comparison of the observed core orientation from magnetic orientation tools to the expected orientation based on the paleomagnetic directions recorded in the cores revealed an 180° misalignment in the assembly of one of the tools. This misalignment appears to have persisted over several years and could explain most of the problems previously noted. The assembly part was fixed, and this problem was eliminated for future expeditions. We subsequently spent 20 days at Site U1555 (Proposed Site REYK-13A) to test the three types of drill bits, an underreamer, and a coring bit in six holes. The TCI bits were the best performers, the TCI/PDC hybrid bit did not stand up to the harsh formation, and the PDC bit did not get sufficient run time because of a mud motor failure. The cutter block underreamer is not considered able to perform major hole opening in basalt but could be useful for knocking out ledges. The PDC coring bit cut good quality basalt cores at an unacceptably low rate. In the seventh and final hole (U1555G), we used a regular RCB coring bit to recover the entire 130 m basalt section specified in the Expedition 395 Scientific Prospectus and provided the project team with shipboard data and samples. The basalt section was successfully wireline logged before the logging winch motor failed, which precluded further operations for safety reasons. Additional operations plans in support of Expedition 395, including coring, logging, and casing at Site U1554, had to be canceled, and Expedition 384 ended prematurely on 24 August in Kristiansand. 
    more » « less
  4. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 360 will form the first leg of a multiphase drilling project that aims to drill through the crust/mantle boundary at the ultraslow-spreading Southwest Indian Ridge and investigate the nature of the Mohorovičić seismic discontinuity (Moho). Expedition 360 is expected to drill ~1300 m into lower crustal gabbro and is unlikely to penetrate the crust–mantle transition or recover a significant amount of peridotite. Drilling will be sited at Atlantis Bank, on an elevated wave-cut platform on the east flank of the Atlantis II Transform. Previous drilling and mapping shows that Atlantis Bank is a large oceanic core complex, exposing a tectonic window of deep crustal and lithospheric mantle exhumed on the footwall of an oceanic detachment fault. The shallowest part of Atlantis Bank, at 700 m water depth, consists of a ~25 km2 wave-cut platform rimmed by a thin bioclastic limestone cap. The platform is part of a continuous gabbro massif ~40 km long by 30 km wide, overlying granular mantle peridotite that forms the lower slopes of the eastern wall of the Atlantis II Transform. Mapping shows that basement on the wave-cut platform consists largely of shallow-dipping amphibolitized gabbro mylonite generated by detachment faulting. This fault rooted near-continuously into partially crystalline gabbro for >4 million years. The mylonite exposed on the platform, and by cross-faulting and landslips on the sides of Atlantis Bank, both cut and are cut by steeply north dipping greenschist-facies diabase dikes. Thus, the gabbro crystallized at depth was uplifted into the zone of diking at the ridge axis, creating, in effect, the equivalent to the base of a dike–gabbro transition seen in many ophiolites. Previous Ocean Drilling Program (ODP) operations at Atlantis Bank drilled the 1508 m deep Hole 735B and 150 m deep Hole 1105A, both recovering long sections of gabbro. During Expedition 360, we propose to drill to a nominal depth of 1.3 km at a site on the northern edge of the Atlantis Bank platform, ~1 km north-northeast of Hole 1105A and ~2 km northeast of Hole 735B. A future drilling expedition, SloMo-Leg 2, aims to deepen the hole to ~3 km, with the overall goal of penetrating the crust–mantle transition, which is believed to be ~2.5 km above the seismically determined Moho. Specific objectives of Expedition 360 include establishing the lateral continuity of the igneous, metamorphic, and structural stratigraphies previously drilled to the southwest, testing the nature of a magnetic polarity transition, and investigating the biogeochemistry of the lower crust. 
    more » « less
  5. International Ocean Discovery Program (IODP) Expedition 399 will collect new cores from the Atlantis Massif (30°N; Mid-Atlantic Ridge), an oceanic core complex that has transformed our understanding of tectonic and magmatic processes at slow- and ultraslow-spreading ridges. The exposure of deep mantle rocks leads to serpentinization, with major consequences for the properties of the oceanic lithosphere, heat exchange between the ocean and crust, geochemical cycles, and microbial activity. The Lost City hydrothermal field (LCHF) is situated on its southern wall and vents warm (40°–95°C) alkaline fluids rich in hydrogen, methane, and abiotic organic molecules. The Atlantis Massif was the site of four previous expeditions (Integrated Ocean Drilling Program Expeditions 304, 305, and 340T and IODP Expedition 357) and numerous dredging and submersible expeditions. The deepest IODP hole in young (<2 My) oceanic lithosphere, Hole U1309D, was drilled 5 km north of the LCHF and reaches 1415 meters below seafloor (mbsf) through a primitive series of gabbroic rock. In contrast, during Expedition 357 a series of shallow (<16.4 mbsf) holes were drilled along the south wall of the massif, one within 0.4 km of the LCHF, and serpentinized peridotites were recovered. The hydrologic regime differs between the two locations, with a low permeability conductive regime in Hole U1309D and a high likelihood of deep permeability along the southern wall. Expedition 399 targets both locations to collect new data on ancient processes during deformation and alteration of detachment fault rocks. Recovered rocks and fluids will provide new insights into ongoing water-rock interactions, abiotic organic synthesis reactions, and the extent and diversity of life in the subseafloor in an actively serpentinizing system. We will deepen Hole U1309D to 2060 mbsf, where temperatures are expected to be ~220°C. The lithology is predicted to transition with depth from primarily gabbroic to more ultramafic material. Predicted temperatures are well above the known limits of life, so detectable hydrogen, methane, and organic molecules can be readily attributed to abiotic processes. A new ~200 m hole will be drilled on the southern ridge close to Expedition 357 Site M0069, where both deformed and undeformed serpentinites were recovered. We aim to recover a complete section through the detachment fault zone and to sample material that reflects the subseafloor biological, geochemical, and alteration processes that occur along the LCHF circulation pathway. Borehole fluids from both holes will be collected using both the Kuster Flow Through Sampler tool and the new Multi-Temperature Fluid Sampler tool. Wireline logging will provide information on downhole density and resistivity, image structural features, and document fracture orientations. A reentry system will be installed at proposed Site AMDH-02A, and Hole U1309D will be left open for future deep drilling, fluid sampling, and potentially borehole observatories. 
    more » « less