skip to main content


Title: Investigation of the evaporation and fuel property effect on liquid jets in supersonic crossflow
Due to the longer auto-ignition time with liquid fuels compared with hydrogen, the understanding of interaction of shock waves with sprays and the subsequent vapor mixing is significant to design ramjets/scramjets with liquid fuel sprays. In this study, an Eulerian-Lagrangian framework is developed based on the OpenFOAM platform. In this solver, detailed multi-component transport models for Eulerian gas-phase species properties are included. In addition, Lagrangian spray break-up, atomization and evaporation models are added to simulate liquid phase. In addition, an equilibrium wall function is added to model the near-wall properties. The newly developed solver is used to conduct large eddy simulations (LES) on non-reactive liquid jets in supersonic crossflow (JISCF) with liquid sprays. The liquid penetration length are compared with the experimental data, showing a very good agreement. Effects of evaporation and fuel properties (e.g., heat capacity and enthalpy of evaporation) on penetration length, temperature, Sauter mean diameter (SMD) and volumetric parcel flux are discussed in this study. It is shown that evaporation effects primarily show up in the temperature field. For n-heptane sprays, such impact could be conducted to other properties of the flow field like spray plume size, particle size distribution and volumetric flux, which is caused by the smaller enthalpy of evaporation and heat capacity comparing to water. Full version of this paper has been published as a journal article: Shufan Zou, Dezhi Zhou, Suo Yang, “Effects of Evaporation and Fuel Properties on Liquid Jets in Supersonic Crossflow: a Computational study using a compressible Eulerian-Lagrangian solver”, Atomization and Sprays 30 (9) (2020) 675-696. https://doi.org/10.1615/AtomizSpr.2020034860  more » « less
Award ID(s):
2023932
NSF-PAR ID:
10282028
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
12th U.S. National Combustion Meeting
Page Range / eLocation ID:
usncm12-2H10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the present work, we model and simulate the injection and atomization of a gasoline surrogate jet by detailed numerical simulation. The surrogate fuel has a low volatility and thus no phase change occurs in the process. The nozzle geometry and operation conditions are similar to the Engine Combustion Network (ECN) “Spray G”. We focus the present study on the near field where inter-jet interaction is of secondary importance. Therefore, we have considered only one of the eight jets in the original Spray G injectors. The liquid is injected from the inlet into a chamber with stagnant gas. A tangential component of velocity is introduced at the inlet to mimic the complex internal flow in the original spray G injector, which leads to the jet deflection. A parametric study on the inlet tangential velocity is carried out to identify the proper value to be used. Simulations are performed with the multiphase flow solver, Basilisk, on an adaptive mesh. The gas-liquid interface is captured by the volume-of-fluid method. The numerical results are compared to the X-ray experimental data for the jet deflection angle and the temporal variation of penetration length. The vortex dynamics in the near field are also presented by the assistance of the vortex-identification criterion. 
    more » « less
  2. With the growing trend of decarbonization in ground transportation, low and zero-carbon fuels have attracted extensive research interest. Liquid ammonia is a promising alternative fuel due to its relatively high volumetric energy density, mature production and distribution infrastructure, convenience of storage, and zero carbon emissions. However, ammonia combustion also suffers from low flame speed and weak chemical reactivity. In this work, we computationally investigate the suitable engine-relevant thermochemical conditions for auto-ignition of constant volume ammonia spray, as well as its spray dynamics, vaporization, flash boiling effects, and emissions. The simulation is first validated by comparing it against available experimental data from a vaporizing ammonia spray and is then extended to chemically reactive conditions. Results show that ammonia sprays under engine-relevant conditions (60 bar and 1200 K) can only successfully auto-ignite for cases with ambient hydrogen addition, through enhancement of thermal condition and chemical reactivity. A chemical flux analysis is conducted to further understand the important species and reactions that promote ammonia auto-ignition from hydrogen, which potentially can be introduced via H2solubility, exhaust gas recirculation, and onboard ammonia thermal decomposition. Furthermore, results have indicated that charge cooling effects can further decrease the temperature in the flow field and make auto-ignition more difficult. This study provided useful insights for the application of ammonia as a zero-carbon diesel fuel for ground transportation.

     
    more » « less
  3. The evaporation of droplets on surfaces is a ubiquitous phenomenon essential in nature and industrial applications ranging from thermal management of electronics to self-assembly-based fabrication. In this study, water droplet evaporation on a thin quartz substrate is analyzed using an unsteady two-step arbitrary Lagrangian-Eulerian (ALE) moving mesh model, wherein the evaporation process is simulated during the constant contact radius (CCR) and contact angle (CCA) modes. The numerical model considers mass transfer in the gas domain, flow in the liquid and gas domains, and heat transfer in the solid, liquid, and gas domains. Besides, the model also accounts for interfacial force balance, including thermocapillary stresses, to obtain the instantaneous droplet shape. Experiments involving droplet evaporation on unheated quartz substrates agree with model predictions of contact radius, contact angle, and droplet volume. Model results indicating temperature and velocity distribution across an evaporating water droplet show that the lowest temperatures are at the liquid-gas interface, and a single vortex exists for the predominant duration of the droplet's lifetime. The temperature of the unheated substrate is also significantly reduced due to evaporative cooling. The interfacial evaporation flux distribution, which depends on heat transfer across the droplet and advection in the surrounding medium, shows the highest values near the three-phase contact line. In addition, the model also predicts evaporation dynamics when the substrate is heated and exposed to different advection conditions. Generally, higher evaporation rates result from higher substrate heating and advection rates. However, substrate heating and advection in the surrounding gas have minimal effects on the relative durations of CCR and CCA modes for a given receding contact angle. Specifically, in this case, a 40× increase in substrate heating rate or 7.5× increase in gas velocity can only change these relative durations by 3%. This study also highlights the importance of surface wettability, which affects evaporation dynamics for all the conditions explored by the numerical model. 
    more » « less
  4. The spray characteristics of fuels when sprayed under superheated and elevated fuel pressure are markedly different than traditional fuel injection sprays. Studying fuel sprays under these conditions will help us understand the complex behaviors that may provide us with information to optimize future applications of certain technologies like supercritical spray combustion. In this work optical diagnostics are used to study the behavior of Jet A-1 under subcritical, transcritical, and supercritical sprays into open air test chambers. The experimental setup includes a high-pressure air driven pump to create the required high fuel pressure and a special heated injector to increase the temperature of the fuel inside the injector before injection to the required temperatures. Optical techniques like Schlieren and backlit shadowgraph are used to capture and study the sprays from a single hole high pressure diesel injector. A combination of 4 different temperatures and 4 different pressures are tested and the resultant images are processed to obtain quantitative measurements such as spray penetrations, spray cone angle, and spray optical density for each case. Moreover, the spray plume structure transition with changing parameters from subcritical, transcritical, and supercritical states for the fuel are also studied. The results show that with the fuel being in a transcritical state before injection there is a measurable variation in the spray cone formation and penetration for any fixed pressure. At this state the spray cone shows a bimodal spray angle distribution with increasing penetration. An increase in vapor turbulence is also observed indicating the occurrence of flash boiling of the fuel. With the fuels pushed to a supercritical state, the spray shows a thinner spray jet near the injector with a reduced overall penetration and reduced optical density near nozzle. The transition between the three different states as shown in this study gives us an interesting relationship between the spray penetration, spray cone angle and the spray optical density. This can be used as an indicator in understanding spray atomization of the fuels under supercritical spray conditions. 
    more » « less
  5. Sea spray exchanging momentum, heat, and moisture is one of the major uncertainties in modeling air–sea surface heat fluxes under high wind speeds. As a result of several untested assumptions in existing models and low fidelity in the measurements, questions regarding the appropriate method for modeling the effects of spray on air–sea fluxes still exist. In this study, we implement idealized direct numerical simulations (DNS) via an Eulerian–Lagrangian model to simulate spray droplets in turbulent flows. Then, we verify the bulk spray models of Fairall et al. and Andreas et al. with the detailed physics from DNS. We find that the quality of the underlying assumptions of bulk models is sensitive to the time scales governing spray microphysics and lifetime. While both models assume that spray experiences a uniform and steady ambient condition, our results show that this assumption only works well for droplets with long thermodynamic time scales and relatively short lifetime. When the thermodynamic time scales are short, the models fail to predict the correct temperature and radius change of spray (e.g., condensation), thus spray-mediated heat fluxes, which in turn overestimates the total heat fluxes. Moreover, using our two-way coupled simulations, we find a negative feedback induced by the spray evaporation that may be missing in the bulk models, which could lead to further overestimates of the total heat flux when the spray-mediated flux is treated as an add-on to the corresponding interfacial flux. We further illustrate that the feedback effects are consistent under different flow Reynolds numbers, which suggests that the findings are relevant at practical scales.

     
    more » « less