Lead Sulfide (PbS) colloidal quantum dots (CQDs) are promising materials for flexible and wearable photovoltaic devices and technologies due to their low cost, solution processibility and bandgap tunability with quantum dot size. However, PbS CQD solar cells have limitations on performance efficiency due to charge transport losses in the CQD layers and hole transport layer (HTL). This study pursues two promising techniques in parallel to address these challenges. Solution-phase annealing of the absorbing PbS-PbX2 (X = Br, I) layer can reduce charge transport losses by removing oleic acid and parasitic hydroxyl ligands. Additionally, optoelectronic simulations are used to show that HTL performance can be improved by the addition of a 2D transition metal dichalcogenide (TMD) layer to the PbS CQD-based HTL. We use solution-phase exfoliation to produce and incorporate 2D WSe2 nanoflakes into the HTL. We report a power conversion efficiency (PCE) increase of up to 3.4% for the solution-phase-annealed devices and up to 1% for the 2D WSe2 HTL augmented devices. A combination of these two techniques should result in high-performing PbS CQD solar cells, paving the way for further advancements in flexible photovoltaics.
more »
« less
New Chalcogenide-Based Hole Transport Materials for Colloidal Quantum Dot Photovoltaics
Colloidal Quantum Dot (CQD) thin films are ad- vantageous for solar energy generation because of their low- cost and size-tunable, solution-processable nature. However, their efficiency in solar cells is limited in part by the performance of the hole transport layer (HTL). Through Solar Cell Capacitance Simulations and Transfer Matrix Method calculations, we show that significant photogeneration occurs in the standard HTL of ethanedithiol-passivated lead sulfide CQDs which is a problem due to the sub-optimal carrier mobility in this material. We report new HTLs composed of chalcogenide-based materials to address these issues, and demonstrate an absolute power conversion efficiency improvement of 1.35% in the best device.
more »
« less
- Award ID(s):
- 1807342
- PAR ID:
- 10282046
- Date Published:
- Journal Name:
- Conference record of the IEEE Photovoltaic Specialists Conference
- ISSN:
- 0160-8371
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Antimony selenide (Sb2Se3) is a promising light absorber material for solar cells because of its superior photovoltaic properties. However, the current performance of the Sb2Se3 solar cell is much lower than its theoretical value (∼32%) due to its low open-circuit voltage (VOC). In this paper, we have demonstrated inorganic vanadium oxides (VOx) as a hole transport layer (HTL) for Sb2Se3 solar cells to enhance efficiency through the VOC improvement. Here, a solution-processed VOx through the decomposition of the triisopropoxyvanadium (V) oxide is deposited on the Sb2Se3 absorber layer prepared by close-spaced sublimation (CSS). With VOx HTL, the built-in voltage (Vbi) is significantly increased, leading to improved VOC for the Sb2Se3 solar cell devices. As a result, the efficiency of the device increases from an average efficiency of 5.5% to 6.3% with the VOx.more » « less
-
Colloidal quantum dots (CQDs) are of interest for photovoltaic applications such as flexible and multijunction solar cells, where solution processability and infrared absorption are crucial; however, current CQD solar cell performance is limited by the hole transport layers (HTLs) used in the cells. We report on a method to develop new HTLs for the highest-performing PbS CQD solar cell architecture by tuning the stoichiometry via sulfur infiltration of the p-type CQD HTL to increase its doping density and carrier mobility. Using SCAPS simulations, we predict that increased doping density and mobility should improve the performance of the solar cells. We show that sulfur doping of the current HTL is a facile and effective method to boost the performance of CQD photovoltaics.more » « less
-
Abstract The ability to passivate defects and modulate the interface energy‐level alignment (IEA) is key to boost the performance of perovskite solar cells (PSCs). Herein, we report a robust route that simultaneously allows defect passivation and reduced energy difference between perovskite and hole transport layer (HTL) via the judicious placement of polar chlorine‐terminated silane molecules at the interface. Density functional theory (DFT) points to effective passivation of the halide vacancies on perovskite surface by the silane chlorine atoms. An integrated experimental and DFT study demonstrates that the dipole layer formed by the silane molecules decreases the perovskite work function, imparting an Ohmic character to the perovskite/HTL contact. The corresponding PSCs manifest a nearly 20 % increase in power conversion efficiency over pristine devices and a markedly enhanced device stability. As such, the use of polar molecules to passivate defects and tailor the IEA in PSCs presents a promising platform to advance the performance of PSCs.more » « less
-
Abstract Tandem structure provides a practical way to realize high efficiency organic photovoltaic cells, it can be used to extend the wavelength coverage for light harvesting. The interconnecting layer (ICL) between subcells plays a critical role in the reproducibility and performance of tandem solar cells, yet the processability of the ICL has been a challenge. In this work the fabrication of highly reproducible and efficient tandem solar cells by employing a commercially available material, PEDOT:PSS HTL Solar (HSolar), as the hole transporting material used for the ICL is reported. Comparing with the conventional PEDOT:PSS Al 4083 (c‐PEDOT), HSolar offers a better wettability on the underlying nonfullerene photoactive layers, resulting in better charge extraction properties of the ICL. When FTAZ:IT‐M and PTB7‐Th:IEICO‐4F are used as the subcells, a power conversion efficiency (PCE) of 14.7% is achieved in the tandem solar cell. To validate the processability of these tandem solar cells, three other research groups have successfully fabricated tandem devices using the same recipe and the highest PCE obtained is 16.1%. With further development of donor polymers and device optimization, the device simulation results show that a PCE > 22% can be realized in tandem cells in the near future.more » « less