skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Solution-processed vanadium oxides as a hole-transport layer for Sb2Se3 thin-film solar cells
Antimony selenide (Sb2Se3) is a promising light absorber material for solar cells because of its superior photovoltaic properties. However, the current performance of the Sb2Se3 solar cell is much lower than its theoretical value (∼32%) due to its low open-circuit voltage (VOC). In this paper, we have demonstrated inorganic vanadium oxides (VOx) as a hole transport layer (HTL) for Sb2Se3 solar cells to enhance efficiency through the VOC improvement. Here, a solution-processed VOx through the decomposition of the triisopropoxyvanadium (V) oxide is deposited on the Sb2Se3 absorber layer prepared by close-spaced sublimation (CSS). With VOx HTL, the built-in voltage (Vbi) is significantly increased, leading to improved VOC for the Sb2Se3 solar cell devices. As a result, the efficiency of the device increases from an average efficiency of 5.5% to 6.3% with the VOx.  more » « less
Award ID(s):
1944374 2127640 2019473
PAR ID:
10318640
Author(s) / Creator(s):
Date Published:
Journal Name:
Solar energy
Volume:
231
ISSN:
0038-092X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Colloidal Quantum Dot (CQD) thin films are ad- vantageous for solar energy generation because of their low- cost and size-tunable, solution-processable nature. However, their efficiency in solar cells is limited in part by the performance of the hole transport layer (HTL). Through Solar Cell Capacitance Simulations and Transfer Matrix Method calculations, we show that significant photogeneration occurs in the standard HTL of ethanedithiol-passivated lead sulfide CQDs which is a problem due to the sub-optimal carrier mobility in this material. We report new HTLs composed of chalcogenide-based materials to address these issues, and demonstrate an absolute power conversion efficiency improvement of 1.35% in the best device. 
    more » « less
  2. A systematic study was performed with a coupled optoelectronic model to examine the effect of the concentration of sunlight on the efficiencies of CIGS, CZTSSe and AlGaAs thin-film solar cells with a graded-bandgap absorber layer. Efficiencies of 34.6% for CIGS thin-film solar cells and 29.9% for CZTSSe thin-film solar cells are predicted with a concentration of 100 suns, the respective one-sun efficiencies being 27.7% and 21.7%. An efficiency of 36.7% is predicted for AlGaAs thin-film solar cells with a concentration of 60 suns, in comparison to 34.5% one-sun efficiency. Sunlight concentration does not affect the per-sun electron–hole-pair (EHP) generation rate but reduces the per-sun EHP recombination rate either near the front and back faces or in the graded-bandgap regions of the absorber layer, depending upon the semiconductor used for that layer, and this is the primary reason for the improvement in efficiency. Other effects include the enhancement of open-circuit voltage, which can be positively correlated to the higher short-circuit current density. Sunlight concentration can therefore play a significant role in enhancing the efficiency of thin-film solar cells. 
    more » « less
  3. Rapid progress has been achieved in thin film CdTe solar cells, reaching a power conversion efficiency of 22.1 %. Researchers demonstrated a short-circuit current density (Jsc) of ≈ 31 mA/cm2 and a fill factor (FF) of ≈ 79 %, close to the theoretically calculated maximum values. However, the open-circuit voltage (Voc) remains below 0.9 V, much lower than the estimated Voc of 1.2 V. One strategy to improve the Voc is to implement a passivated back-contact on CdTe that can reduce the recombination by repelling minority carriers at the surface (i.e., electrons in CdTe). An aluminum oxide thin film (Al2O3) is an attractive candidate owing to its innate fixed negative charges (1012 ~ 1013 cm-2). Here, we use a patterned Al2O3 layer on CdTe to produce PERC-like CdTe solar cells (CdTe PERC). 
    more » « less
  4. Cadmium telluride and silicon are among the widely used absorber materials in photovoltaic industry. A tandem solar cell of these two can absorb significant portion of solar spectrum to yield high efficiency due to the added voltage of the two solar cells. On basis of low-cost production, a CdTe/Si cell has the potential to produce low-cost and high efficiency tandem PV. The CdTe top cell in a substrate configuration is essential to achieve a tandem between CdTe and Si. A functional CdS/CdTe solar cell in the substrate configuration was fabricated on a Si wafer. Current -Voltage measurements show a diode-like curve with lower J-V parameters compared to standard CdS/CdTe cells. SCAPS simulations were performed to identify possible reasons for poor performance and help improve the device performance. 
    more » « less
  5. Lead Sulfide (PbS) colloidal quantum dots (CQDs) are promising materials for flexible and wearable photovoltaic devices and technologies due to their low cost, solution processibility and bandgap tunability with quantum dot size. However, PbS CQD solar cells have limitations on performance efficiency due to charge transport losses in the CQD layers and hole transport layer (HTL). This study pursues two promising techniques in parallel to address these challenges. Solution-phase annealing of the absorbing PbS-PbX2 (X = Br, I) layer can reduce charge transport losses by removing oleic acid and parasitic hydroxyl ligands. Additionally, optoelectronic simulations are used to show that HTL performance can be improved by the addition of a 2D transition metal dichalcogenide (TMD) layer to the PbS CQD-based HTL. We use solution-phase exfoliation to produce and incorporate 2D WSe2 nanoflakes into the HTL. We report a power conversion efficiency (PCE) increase of up to 3.4% for the solution-phase-annealed devices and up to 1% for the 2D WSe2 HTL augmented devices. A combination of these two techniques should result in high-performing PbS CQD solar cells, paving the way for further advancements in flexible photovoltaics. 
    more » « less