skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Existence and Hardness of Conveyor Belts
An open problem of Manuel Abellanas asks whether every set of disjoint closed unit disks in the plane can be connected by a conveyor belt, which means a tight simple closed curve that touches the boundary of each disk, possibly multiple times. We prove three main results: For unit disks whose centers are both $$x$$-monotone and $$y$$-monotone, or whose centers have $$x$$-coordinates that differ by at least two units, a conveyor belt always exists and can be found efficiently. It is NP-complete to determine whether disks of arbitrary radii have a conveyor belt, and it remains NP-complete when we constrain the belt to touch disks exactly once. Any disjoint set of $$n$$ disks of arbitrary radii can be augmented by $O(n)$ "guide" disks so that the augmented system has a conveyor belt touching each disk exactly once, answering a conjecture of Demaine, Demaine, and Palop.  more » « less
Award ID(s):
2007275 1764012
PAR ID:
10282136
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Electronic Journal of Combinatorics
Volume:
27
Issue:
4
ISSN:
1077-8926
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ahn, Hee-Kap; Sadakane, Kunihiko (Ed.)
    In the standard planar k-center clustering problem, one is given a set P of n points in the plane, and the goal is to select k center points, so as to minimize the maximum distance over points in P to their nearest center. Here we initiate the systematic study of the clustering with neighborhoods problem, which generalizes the k-center problem to allow the covered objects to be a set of general disjoint convex objects C rather than just a point set P. For this problem we first show that there is a PTAS for approximating the number of centers. Specifically, if r_opt is the optimal radius for k centers, then in n^O(1/ε²) time we can produce a set of (1+ε)k centers with radius ≤ r_opt. If instead one considers the standard goal of approximating the optimal clustering radius, while keeping k as a hard constraint, we show that the radius cannot be approximated within any factor in polynomial time unless P = NP, even when C is a set of line segments. When C is a set of unit disks we show the problem is hard to approximate within a factor of (√{13}-√3)(2-√3) ≈ 6.99. This hardness result complements our main result, where we show that when the objects are disks, of possibly differing radii, there is a (5+2√3)≈ 8.46 approximation algorithm. Additionally, for unit disks we give an O(n log k)+(k/ε)^O(k) time (1+ε)-approximation to the optimal radius, that is, an FPTAS for constant k whose running time depends only linearly on n. Finally, we show that the one dimensional version of the problem, even when intersections are allowed, can be solved exactly in O(n log n) time. 
    more » « less
  2. Kráľovič, Rastislav; Kučera, Antonín (Ed.)
    Given a set P of n points and a set S of m disks in the plane, the disk hitting set problem asks for a smallest subset of P such that every disk of S contains at least one point in the subset. The problem is NP-hard. This paper considers a line-constrained version in which all disks have their centers on a line. We present an O(mlog²n+(n+m)log(n+m)) time algorithm for the problem. This improves the previous result of O(m²log m+(n+m)log(n+m)) time for the weighted case of the problem where every point of P has a weight and the objective is to minimize the total weight of the hitting set. Our algorithm also solves a more general line-separable problem with a single intersection property: The points of P and the disk centers are separated by a line 𝓁 and the boundary of every two disks intersect at most once on the side of 𝓁 containing P. 
    more » « less
  3. Kráľovič, Rastislav; Kučera, Antonín (Ed.)
    Given a set P of n points and a set S of n weighted disks in the plane, the disk coverage problem is to compute a subset of disks of smallest total weight such that the union of the disks in the subset covers all points of P. The problem is NP-hard. In this paper, we consider a line-separable unit-disk version of the problem where all disks have the same radius and their centers are separated from the points of P by a line 𝓁. We present an O(n^{3/2}log² n) time algorithm for the problem. This improves the previously best work of O(n²log n) time. Our result leads to an algorithm of O(n^{7/2}log² n) time for the halfplane coverage problem (i.e., using n weighted halfplanes to cover n points), an improvement over the previous O(n⁴log n) time solution. If all halfplanes are lower ones, our algorithm runs in O(n^{3/2}log² n) time, while the previous best algorithm takes O(n²log n) time. Using duality, the hitting set problems under the same settings can be solved with similar time complexities. 
    more » « less
  4. Given a set P of n weighted points and a set S of m disks in the plane, the hitting set problem is to compute a subset 𝑃′ of points of P such that each disk contains at least one point of 𝑃′ and the total weight of all points of 𝑃′ is minimized. The problem is known to be NP-hard. In this paper, we consider a line-constrained version of the problem in which all disks are centered on a line ℓ. We present an 𝑂((𝑚+𝑛)log(𝑚+𝑛)+𝜅log𝑚) time algorithm for the problem, where 𝜅 is the number of pairs of disks that intersect. For the unit-disk case where all disks have the same radius, the running time can be reduced to 𝑂((𝑛+𝑚)log(𝑚+𝑛)). In addition, we solve the problem in 𝑂((𝑚+𝑛)log(𝑚+𝑛)) time in the 𝐿∞ and 𝐿1 metrics, in which a disk is a square and a diamond, respectively. 
    more » « less
  5. Iwata, Satoru; Kakimura, Naonori (Ed.)
    Given a set P of n points and a set S of m disks in the plane, the disk coverage problem asks for a smallest subset of disks that together cover all points of P. The problem is NP-hard. In this paper, we consider a line-separable unit-disk version of the problem where all disks have the same radius and their centers are separated from the points of P by a line 𝓁. We present an m^{2/3} n^{2/3} 2^O(log^*(m+n)) + O((n+m)log(n+m)) time algorithm for the problem. This improves the previously best result of O(nm + n log n) time. Our techniques also solve the line-constrained version of the problem, where centers of all disks of S are located on a line 𝓁 while points of P can be anywhere in the plane. Our algorithm runs in O(m√n + (n+m)log(n+m)) time, which improves the previously best result of O(nm log(m+n)) time. In addition, our results lead to an algorithm of n^{10/3} 2^O(log^*n) time for a half-plane coverage problem (given n half-planes and n points, find a smallest subset of half-planes covering all points); this improves the previously best algorithm of O(n⁴log n) time. Further, if all half-planes are lower ones, our algorithm runs in n^{4/3} 2^O(log^*n) time while the previously best algorithm takes O(n²log n) time. 
    more » « less