skip to main content


Title: From colloidal particles to photonic crystals: advances in self-assembly and their emerging applications
Over the last three decades, photonic crystals (PhCs) have attracted intense interests thanks to their broad potential applications in optics and photonics. Generally, these structures can be fabricated via either “top-down” lithographic or “bottom-up” self-assembly approaches. The self-assembly approaches have attracted particular attention due to their low cost, simple fabrication processes, relative convenience of scaling up, and the ease of creating complex structures with nanometer precision. The self-assembled colloidal crystals (CCs), which are good candidates for PhCs, have offered unprecedented opportunities for photonics, optics, optoelectronics, sensing, energy harvesting, environmental remediation, pigments, and many other applications. The creation of high-quality CCs and their mass fabrication over large areas are the critical limiting factors for real-world applications. This paper reviews the state-of-the-art techniques in the self-assembly of colloidal particles for the fabrication of large-area high-quality CCs and CCs with unique symmetries. The first part of this review summarizes the types of defects commonly encountered in the fabrication process and their effects on the optical properties of the resultant CCs. Next, the mechanisms of the formation of cracks/defects are discussed, and a range of versatile fabrication methods to create large-area crack/defect-free two-dimensional and three-dimensional CCs are described. Meanwhile, we also shed light on both the advantages and limitations of these advanced approaches developed to fabricate high-quality CCs. The self-assembly routes and achievements in the fabrication of CCs with the ability to open a complete photonic bandgap, such as cubic diamond and pyrochlore structure CCs, are discussed as well. Then emerging applications of large-area high-quality CCs and unique photonic structures enabled by the advanced self-assembly methods are illustrated. At the end of this review, we outlook the future approaches in the fabrication of perfect CCs and highlight their novel real-world applications.  more » « less
Award ID(s):
1810485
NSF-PAR ID:
10282421
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Society Reviews
Volume:
50
Issue:
10
ISSN:
0306-0012
Page Range / eLocation ID:
5898 to 5951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Self‐assembly continuously gains attention as an excellent method to create novel nanoscale structures with a wide range of applications in photonics, optoelectronics, biomedical engineering, and heat transfer applications. However, self‐assembly is governed by a diversity of complex interparticle forces that cause fabricating defectless large scale (>1 cm) colloidal crystals, or opals, to be a daunting challenge. Despite numerous efforts to find an optimal method that offers the perfect colloidal crystal by minimizing defects, it has been difficult to provide physical interpretations that govern the development of defects such as grain boundaries. This study reports the control over grain domains and intentional defect characteristics that develop during evaporative vertical deposition. The degree of particle crystallinity and evaporation conditions is shown to govern the grain domain characteristics, such as shapes and sizes. In particular, the grains fabricated with 300 and 600 nm sphere diameters can be tuned into single‐column structures exceeding ≈1 mm by elevating heating temperature up to 93 °C. The understanding of self‐assembly physics presented in this work will enable the fabrication of novel self‐assembled structures with high periodicity and offer fundamental groundworks for developing large‐scale crack‐free structures.

     
    more » « less
  2. Abstract

    Liquid crystals offer a dynamic platform for developing advanced photonics and soft actuation systems due to their unique and facile tunability and reconfigurability. Achieving precise spatial patterning of the liquid crystal alignment is critical to developing electro‐optical devices, programmable origami, directed colloidal assembly, and controlling active matter. Here, a simple method is demonstrated to achieve continuous 3D control of the directions of liquid crystal mesogens using a two‐step photo‐exposure process. In the first step, polarized light sets the orientation in the plane of confining substrates; the second step uses unpolarized light of a prescribed dose to set the out‐of‐plane orientation. The method enables smoothly varying orientational patterns with sub‐micrometer precision. As a demonstration, the setup is used to create gradient‐index lenses with parabolic refractive index profiles that remain stable without external electric fields. The lenses' focal length and sensitivity to light polarization are characterized through experimental and numerical methods. The findings pave the way for developing next‐generation photonic devices and actuated materials, with potential applications in molecular self‐assembly, re‐configurable optics, and responsive matter.

     
    more » « less
  3. Abstract

    Metamolecules and crystals consisting of nanoscale building blocks offer rich models to study colloidal chemistry, materials science, and photonics. Herein we demonstrate the self‐assembly of colloidal Ag nanoparticles into quasi‐one‐dimensional metamolecules with an intriguing self‐healing ability in a linearly polarized optical field. By investigating the spatial stability of the metamolecules, we found that the origin of self‐healing is the inhomogeneous interparticle electrodynamic interactions enhanced by the formation of unusual nanoparticle dimers, which minimize the free energy of the whole structure. The equilibrium configuration and self‐healing behavior can be further tuned by modifying the electrical double layers surrounding the nanoparticles. Our results reveal a unique route to build self‐healing colloidal structures assembled from simple metal nanoparticles. This approach could potentially lead to reconfigurable plasmonic devices for photonic and sensing applications.

     
    more » « less
  4. Abstract

    Metamolecules and crystals consisting of nanoscale building blocks offer rich models to study colloidal chemistry, materials science, and photonics. Herein we demonstrate the self‐assembly of colloidal Ag nanoparticles into quasi‐one‐dimensional metamolecules with an intriguing self‐healing ability in a linearly polarized optical field. By investigating the spatial stability of the metamolecules, we found that the origin of self‐healing is the inhomogeneous interparticle electrodynamic interactions enhanced by the formation of unusual nanoparticle dimers, which minimize the free energy of the whole structure. The equilibrium configuration and self‐healing behavior can be further tuned by modifying the electrical double layers surrounding the nanoparticles. Our results reveal a unique route to build self‐healing colloidal structures assembled from simple metal nanoparticles. This approach could potentially lead to reconfigurable plasmonic devices for photonic and sensing applications.

     
    more » « less
  5. Abstract

    The unique optical properties of transition metal dichalcogenide (TMD) monolayers have attracted significant attention for both photonics applications and fundamental studies of low-dimensional systems. TMD monolayers of high optical quality, however, have been limited to micron-sized flakes produced by low-throughput and labour-intensive processes, whereas large-area films are often affected by surface defects and large inhomogeneity. Here we report a rapid and reliable method to synthesize macroscopic-scale TMD monolayers of uniform, high optical quality. Using 1-dodecanol encapsulation combined with gold-tape-assisted exfoliation, we obtain monolayers with lateral size > 1 mm, exhibiting exciton energy, linewidth, and quantum yield uniform over the whole area and close to those of high-quality micron-sized flakes. We tentatively associate the role of the two molecular encapsulating layers as isolating the TMD from the substrate and passivating the chalcogen vacancies, respectively. We demonstrate the utility of our encapsulated monolayers by scalable integration with an array of photonic crystal cavities, creating polariton arrays with enhanced light-matter coupling strength. This work provides a pathway to achieving high-quality two-dimensional materials over large areas, enabling research and technology development beyond individual micron-sized devices.

     
    more » « less