skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Shear‐Induced Assembly of Liquid Colloidal Crystals for Large‐Scale Structural Coloration of Textiles
Abstract Photonic crystals (PCs) constructed from colloidal building blocks have attracted increasing attention because their brilliant structural colors may find broad applications in paints, sensors, displays, and security devices. However, producing high‐quality structural colors on flexible substrates such as textiles in an efficient and scalable manner remains a challenge. Here a robust and ultrafast approach to produce industrial‐scale colloidal PCs by the shear‐induced assembly of liquid colloidal crystals of polystyrene beads pre‐formed spontaneously over a critical volume fraction is demonstrated. The pre‐crystallization of colloidal crystals allows their efficient assembly into large‐scale PCs on flexible fabric substrates under shear force. Further, by programming the wettability of the fabric substrate with hydrophilic–hydrophobic regions, this shear‐based assembly strategy can conveniently generate pre‐designed patterns of complex structural colors. This assembly strategy brings structural coloration to flexible fabrics at a scale suitable for commercial applications; therefore, it holds the potential to revolutionize the coloration technology in the textile industry.  more » « less
Award ID(s):
1810485
PAR ID:
10452716
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
31
Issue:
19
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Printable structural colors, originating from the interaction of light with micro- and nanostructures, have emerged as a promising approach for creating vibrant, durable, and environmentally friendly coloration. The mechanisms of natural structural colors are introduced. Current printing techniques, including nozzle-based and light-based methods, are discussed, along with their respective color generation strategies. These strategies are categorized into three main approaches: nanostructure self-assembly, high-resolution printing, and total reflection interfaces. Additionally, this review addresses the current challenges within the field for each strategy and proposes potential future directions for the development of printable structural colors. Graphical abstract 
    more » « less
  2. Abstract Photonic crystals—a class of materials whose optical properties derive from their structure in addition to their composition—can be created by self-assembling particles whose sizes are comparable to the wavelengths of visible light. Proof-of-principle studies have shown that DNA can be used to guide the self-assembly of micrometer-sized colloidal particles into fully programmable crystal structures with photonic properties in the visible spectrum. However, the extremely temperature-sensitive kinetics of micrometer-sized DNA-functionalized particles has frustrated attempts to grow large, monodisperse crystals that are required for photonic metamaterial applications. Here we describe a robust two-step protocol for self-assembling single-domain crystals that contain millions of optical-scale DNA-functionalized particles: Monodisperse crystals are initially assembled in monodisperse droplets made by microfluidics, after which they are grown to macroscopic dimensions via seeded diffusion-limited growth. We demonstrate the generality of our approach by assembling different macroscopic single-domain photonic crystals with metamaterial properties, like structural coloration, that depend on the underlying crystal structure. By circumventing the fundamental kinetic traps intrinsic to crystallization of optical-scale DNA-coated colloids, we eliminate a key barrier to engineering photonic devices from DNA-programmed materials. 
    more » « less
  3. Mechanoresponsive, soft, photonic materials with tunable structural coloration represent a class of materials that have potential benefits for a wide range of applications. While many lab‐scale fabrication approaches afford control over the nano‐ and microscale morphology of these materials, upscaling their manufacture remains a challenge. Herein, a scalable fabrication concept is proposed that centers on the modular assembly of color‐changing materials from microscale building blocks. The building blocks consist of hydrogel‐based spherical photonic crystals. They are formed through a water‐in‐oil emulsification of nanoscale colloidal particles suspended in the aqueous phase. Once formed, the photonic crystal microspheres are then assembled into macroscale photonic materials, such as stretchable fibers or sheets. The resulting materials respond to a mechanical deformation with a reversible, dynamic change in color. Fabricated via a scalable, modular‐assembly approach, these mechanoresponsive photonic fibers and sheets, in turn, form a valuable building block for sensing systems or visual communication in healthcare, architecture, and consumer product design. 
    more » « less
  4. Disclinations in nematic liquid crystals are of great interest both theoretically and practically. The ability to create and reconfigure disclinations connecting predetermined points on substrates could enable novel applications such as directed self-assembly of micro/nanoparticles and molecules. In this study, we present a novel approach to design and create disclination interconnects that connect predetermined positions on substrates. We demonstrate that these interconnects can be switched between different states by re-writing photoalignment materials with linearly polarized light, and can be switched between degenerate states using electric fields. The demonstrated strategy allows for creation of multi-scale designer disclination networks and promises potential applications in directed assembly of colloidal micro-/nano-particles, command of active matter, and liquid crystal microfluidics 
    more » « less
  5. Abstract Photonic crystals are extensively explored to replace inorganic pigments and organic dyes as coloring elements in printing, painting, sensing, and anti‐counterfeiting due to their brilliant structural colors, chemical stability, and environmental friendliness. However, most existing photonic‐crystal‐based pigments can only display monochromatic colors once made, and generating multicolors has to start with designing different building blocks. Here, a novel photonic pigment featuring highly tunable structural colors in the entire visible spectrum, made by the magnetic assembly of monodisperse nanorods into body‐centered‐tetragonal photonic crystals, is reported. Their prominent magnetic and crystal anisotropy makes it efficient to generate multicolors using one photonic pigment by magnetically controlling the crystal orientation. Further, the combination of angle‐dependent diffraction and magnetic orientation control enables the design of rotation‐asymmetric photonic films that display distinct patterns and encrypted information in response to rotation. The efficient multicolor generation through precise orientational control makes this novel photonic pigment promising in developing high‐performance structural‐colored materials and optical devices. 
    more » « less