As countries look toward re-opening of economic activities amidst the ongoing COVID-19 pandemic, ensuring public health has been challenging. While contact tracing only aims to track past activities of infected users, one path to safe reopening is to develop reliable spatiotemporal risk scores to indicate the propensity of the disease. Existing works which aim at developing risk scores either rely on compartmental model-based reproduction numbers (which assume uniform population mixing) or develop coarse-grain spatial scores based on reproduction number (R0) and macro-level density-based mobility statistics. Instead, in this article, we develop a Hawkes process-based technique to assign relatively fine-grain spatial and temporal risk scores by leveraging high-resolution mobility data based on cell-phone originated location signals. While COVID-19 risk scores also depend on a number of factors specific to an individual, including demography and existing medical conditions, the primary mode of disease transmission is via physical proximity and contact. Therefore, we focus on developing risk scores based on location density and mobility behaviour. We demonstrate the efficacy of the developed risk scores via simulation based on real-world mobility data. Our results show that fine-grain spatiotemporal risk scores based on high-resolution mobility data can provide useful insights and facilitate safe re-opening.
more »
« less
HealthWalks: Sensing Fine-grained Individual Health Condition via Mobility Data
Can health conditions be inferred from an individual's mobility pattern? Existing research has discussed the relationship between individual physical activity/mobility and well-being, yet no systematic study has been done to investigate the predictability of fine-grained health conditions from mobility, largely due to the unavailability of data and unsatisfactory modelling techniques. Here, we present a large-scale longitudinal study, where we collect the health conditions of 747 individuals who visit a hospital and tracked their mobility for 2 months in Beijing, China. To facilitate fine-grained individual health condition sensing, we propose HealthWalks, an interpretable machine learning model that takes user location traces, the associated points of interest, and user social demographics as input, at the core of which a Deterministic Finite Automaton (DFA) model is proposed to auto-generate explainable features to capture useful signals. We evaluate the effectiveness of our proposed model, which achieves 40.29% in micro-F1 and 31.63% in Macro-F1 for the 8-class disease category prediction, and outperforms the best baseline by 22.84% in Micro-F1 and 31.79% in Macro-F1. In addition, deeper analysis based on the SHapley Additive exPlanations (SHAP) showcases that HealthWalks can derive meaningful insights with regard to the correlation between mobility and health conditions, which provide important research insights and design implications for mobile sensing and health informatics.
more »
« less
- Award ID(s):
- 1816889
- PAR ID:
- 10282488
- Date Published:
- Journal Name:
- Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
- Volume:
- 4
- Issue:
- 4
- ISSN:
- 2474-9567
- Page Range / eLocation ID:
- 1 to 26
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Activity recognition has applications in a variety of human-in-the-loop settings such as smart home health monitoring, green building energy and occupancy management, intelligent transportation, and participatory sensing. While fine-grained activity recognition systems and approaches help enable a multitude of novel applications, discovering them with non-intrusive ambient sensor systems pose challenging design, as well as data processing, mining, and activity recognition issues. In this paper, we develop a low-cost heterogeneous Radar based Activity Monitoring (RAM) system for recognizing fine-grained activities. We exploit the feasibility of using an array of heterogeneous micro-doppler radars to recognize low-level activities. We prototype a short-range and a long-range radar system and evaluate the feasibility of using the system for fine-grained activity recognition. In our evaluation, using real data traces, we show that our system can detect fine-grained user activities with 92.84% accuracy.more » « less
-
In this article, we introduce a new method for discretizing micro-macro models of dilute polymeric fluids by integrating a finite element method (FEM) discretization for the macroscopic fluid dynamics equation with a deterministic variational particle scheme for the microscopic Fokker-Planck equation. To address challenges arising from micro-macro coupling, we employ a discrete energetic variational approach to derive a coarse-grained micro-macro model with a particle approximation first and then develop a particle-FEM discretization for the coarse-grained model. The accuracy of the proposed method is evaluated for a Hookean dumbbell model in a Couette flow by comparing the computed velocity field with existing analytical solutions. We also use our method to study nonlinear FENE dumbbell models in different scenarios, such as extensional flow, pure shear flow, and lid-driven cavity flow. Numerical examples demonstrate that the proposed deterministic particle approach can accurately capture the various key rheological phenomena in the original FENE model, including hysteresis and δ-function-like spike behavior in extensional flows, velocity overshoot phenomenon in pure shear flows, symmetries breaking, vortex center shifting, and vortices weakening in lid-driven cavity flows, with a small number of particles.more » « less
-
Learning explicit and implicit patterns in human trajectories plays an important role in many Location-Based Social Networks (LBSNs) applications, such as trajectory classification (e.g., walking, driving, etc.), trajectory-user linking, friend recommendation, etc. A particular problem that has attracted much attention recently – and is the focus of our work – is the Trajectory-based Social Circle Inference (TSCI), aiming at inferring user social circles (mainly social friendship) based on motion trajectories and without any explicit social networked information. Existing approaches addressing TSCI lack satisfactory results due to the challenges related to data sparsity, accessibility and model efficiency. Motivated by the recent success of machine learning in trajectory mining, in this paper we formulate TSCI as a novel multi-label classification problem and develop a Recurrent Neural Network (RNN)-based framework called DeepTSCI to use human mobility patterns for inferring corresponding social circles. We propose three methods to learn the latent representations of trajectories, based on: (1) bidirectional Long Short-Term Memory (LSTM); (2) Autoencoder; and (3) Variational autoencoder. Experiments conducted on real-world datasets demonstrate that our proposed methods perform well and achieve significant improvement in terms of macro-R, macro-F1 and accuracy when compared to baselines.more » « less
-
With increased globalization and labor mobility, human resource reallocation across firms, industries and regions has become the new norm in labor markets. The emergence of massive digital traces of such mobility offers a unique opportunity to understand labor mobility at an unprecedented scale and granularity. While most studies on labor mobility have largely focused on characterizing macro-level (e.g., region or company) or micro-level (e.g., employee) patterns, the problem of how to accurately predict an employee's next career move (which company with what job title) receives little attention. This paper presents the first study of large-scale experiments for predicting next career moves. We focus on two sources of predictive signals: profile context matching and career path mining and propose a contextual LSTM model, NEMO, to simultaneously capture signals from both sources by jointly learning latent representations for different types of entities (e.g., employees, skills, companies) that appear in different sources. In particular, NEMO generates the contextual representation by aggregating all the profile information and explores the dependencies in the career paths through the Long Short-Term Memory (LSTM) networks. Extensive experiments on a large, real-world LinkedIn dataset show that NEMO significantly outperforms strong baselines and also reveal interesting insights in micro-level labor mobility.more » « less
An official website of the United States government

