Abstract Non-Newtonian fluid mechanics and computational rheology widely exploit elastic dumbbell models such as Oldroyd-B and FENE-P for a continuum description of viscoelastic fluid flows. However, these constitutive equations fail to accurately capture some characteristics of realistic polymers, such as the steady extension in simple shear and extensional flows, thus questioning the ability of continuum-level modeling to predict the hydrodynamic behavior of viscoelastic fluids in more complex flows. Here, we present seven elastic dumbbell models, which include different microstructurally inspired terms, i.e., (i) the finite polymer extensibility, (ii) the conformation-dependent friction coefficient, and (iii) the conformation-dependent non-affine deformation. We provide the expressions for the steady dumbbell extension in shear and extensional flows and the corresponding viscosities for various elastic dumbbell models incorporating different microscopic features. We show the necessity of including these microscopic features in a constitutive equation to reproduce the experimentally observed polymer extension in shear and extensional flows, highlighting their potential significance in accurately modeling viscoelastic channel flow with mixed kinematics.
more »
« less
A deterministic–particle–based scheme for micro-macro viscoelastic flows
In this article, we introduce a new method for discretizing micro-macro models of dilute polymeric fluids by integrating a finite element method (FEM) discretization for the macroscopic fluid dynamics equation with a deterministic variational particle scheme for the microscopic Fokker-Planck equation. To address challenges arising from micro-macro coupling, we employ a discrete energetic variational approach to derive a coarse-grained micro-macro model with a particle approximation first and then develop a particle-FEM discretization for the coarse-grained model. The accuracy of the proposed method is evaluated for a Hookean dumbbell model in a Couette flow by comparing the computed velocity field with existing analytical solutions. We also use our method to study nonlinear FENE dumbbell models in different scenarios, such as extensional flow, pure shear flow, and lid-driven cavity flow. Numerical examples demonstrate that the proposed deterministic particle approach can accurately capture the various key rheological phenomena in the original FENE model, including hysteresis and δ-function-like spike behavior in extensional flows, velocity overshoot phenomenon in pure shear flows, symmetries breaking, vortex center shifting, and vortices weakening in lid-driven cavity flows, with a small number of particles.
more »
« less
- PAR ID:
- 10607910
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Journal of Computational Physics
- Volume:
- 522
- Issue:
- C
- ISSN:
- 0021-9991
- Page Range / eLocation ID:
- 113589
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Poole, Robert J (Ed.)The FENE-P (Finitely-Extensible Nonlinear Elastic) dumbbell constitutive equation is widely used in simulations and stability analyses of free and wall-bounded viscoelastic shear flows due to its relative simplicity and accuracy in predicting macroscopic properties of dilute polymer solutions. The model contains three independent material parameters, which expressed in dimensionless form correspond to a Weissenberg number (Wi), i.e., the ratio of the dumbbell relaxation time scale to a characteristic flow time scale, a finite extensibility parameter (L), corresponding to the ratio of the fully extended dumbbell length to the root mean square end-to-end separation of the polymer chain under equilibrium conditions, and a solvent viscosity ratio. An exact solution for the rheological predictions of the FENE-P model in steady simple shear flow is available [Sureshkumar et al., Phys Fluids (1997)], but the resulting nonlinear and nested set of equations do not readily reveal the key shear-thinning physics that dominates at high Wi as a result of the finite extensibility of the polymer chain. In this note we review a simple way of evaluating the steady material functions characterizing the nonlinear evolution of the polymeric contributions to the shear stress and first normal stress difference as the shear rate increases, provide asymptotic expansions as a function of Wi , and show that it is in fact possible to construct universal master curves for these two material functions as well as the corresponding stress ratio. Steady shear flow experiments on three highly elastic dilute polymer solutions of different finite extensibilities also follow the identified master curves. The governing dimensionless parameter for these master curves is Wi/L and it is only in strong shear flows exceeding Wi/L > 1 that the effects of finite extensibility of the polymer chains dominate the evolution of polymeric stresses in the flow field. We suggest that reporting the magnitude of Wi/L when performing stability analyses or simulating shear-dominated flows with the FENE-P model will help clarify finite extensibility effects.more » « less
-
The drag force on a spherical intruder in dense granular shear flows is studied using discrete element method simulations. Three regimes of the intruder dynamics are observed depending on the magnitude of the drag force (or the corresponding intruder velocity) and the flow inertial number: a fluctuation-dominated regime for small drag forces; a viscous regime for intermediate drag forces; and an inertial (cavity formation) regime for large drag forces. The transition from the viscous regime (linear force-velocity relation) to the inertial regime (quadratic force-velocity relation) depends further on the inertial number. Despite these distinct intruder dynamics, we find a quantitative similarity between the intruder drag in granular shear flows and the Stokesian drag on a sphere in a viscous fluid for intruder Reynolds numbers spanning five orders of magnitude. Beyond this first-order description, a modified Stokes drag model is developed that accounts for the secondary dependence of the drag coefficient on the inertial number and the intruder size and density ratios. When the drag model is coupled with a segregation force model for intruders in dense granular flows, it is possible to predict the velocity of gravity-driven segregation of an intruder particle in shear flow simulations.more » « less
-
Abstract The stein variational gradient descent (SVGD) algorithm is a deterministic particle method for sampling. However, a mean-field analysis reveals that the gradient flow corresponding to the SVGD algorithm (i.e., the Stein Variational Gradient Flow) only provides a constant-order approximation to the Wasserstein gradient flow corresponding to the KL-divergence minimization. In this work, we propose the Regularized Stein Variational Gradient Flow, which interpolates between the Stein Variational Gradient Flow and the Wasserstein gradient flow. We establish various theoretical properties of the Regularized Stein Variational Gradient Flow (and its time-discretization) including convergence to equilibrium, existence and uniqueness of weak solutions, and stability of the solutions. We provide preliminary numerical evidence of the improved performance offered by the regularization.more » « less
-
Abstract Ice shelves are assumed to flow steadily from their grounding lines to the ice front. We report the detection of ice‐propagating extensional Lamb (plate) waves accompanied by pulses of permanent ice shelf displacement observed by co‐located Global Navigation Satellite System receivers and seismographs on the Ross Ice Shelf. The extensional waves and associated ice shelf displacement are produced by tidally triggered basal slip events of the Whillans Ice Stream, which flows into the ice shelf. The propagation velocity of 2,800 m/s is intermediate between shear and compressional ice velocities, with velocity and particle motions consistent with predictions for extensional Lamb waves. During the passage of the Lamb waves the entire ice shelf is displaced about 60 mm with a velocity more than an order of magnitude above its long‐term flow rate. Observed displacements indicate a peak dynamic strain of 10−7, comparable to that of earthquake surface waves that trigger ice quakes.more » « less
An official website of the United States government

