skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rayleigh--Bénard convection in strong vertical magnetic field: flow structure and verification of numerical method
Direct numerical simulations are performed to study turbulent Rayleigh–B ́enard convection in a vertical cylindrical cavity exposed to a uniform axial magnetic field. Flows at high Hartmann and Rayleigh numbers are considered. The calculations reveal that, similarly to the behavior observed in Rayleigh–Benard convection with strong rotation, flows under a strong magnetic field develop a central vortex, whereas the heat transfer is suppressed.  more » « less
Award ID(s):
1803730
PAR ID:
10282584
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Magnetohydrodynamics
Volume:
56
Issue:
2-3
ISSN:
0024-998X
Page Range / eLocation ID:
157 to 166
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Direct numerical simulations are carried out to study the flow structure and transport properties in turbulent Rayleigh–Bénard convection in a vertical cylindrical cell of aspect ratio one with an imposed axial magnetic field. Flows at the Prandtl number $0.025$ and Rayleigh and Hartmann numbers up to $$10^{9}$$ and $1400$ , respectively, are considered. The results are consistent with those of earlier experimental and numerical data. As anticipated, the heat transfer rate and kinetic energy are suppressed by a strong magnetic field. At the same time, their growth with Rayleigh number is found to be faster in flows at high Hartmann numbers. This behaviour is attributed to the newly discovered flow regime characterized by prominent quasi-two-dimensional structures reminiscent of vortex sheets observed earlier in simulations of magnetohydrodynamic turbulence. Rotating wall modes similar to those in Rayleigh–Bénard convection with rotation are found in flows near the Chandrasekhar linear stability limit. A detailed analysis of the spatial structure of the flows and its effect on global transport properties is reported. 
    more » « less
  2. Direct numerical simulations are applied to study turbulent Rayleigh-Bénard convection in a vertical cylindrical cavity with uniform axial magnetic field. Flows at moderate Hartmann and Grashof numbers are considered. It is found that the flow is dominated by large- scale coherent structures in the form of near wall jets forming a large-scale circulation roll. Increase of Ha from 50 to 100 has an expected effect of suppression on the rate of heat transfer. 
    more » « less
  3. We study two-dimensional Rayleigh–Bénard convection with Navier-slip, fixed temperature boundary conditions and establish bounds on the Nusselt number. As the slip-length varies with Rayleigh number R a , this estimate interpolates between the Whitehead–Doering bound by R a 5 12 for free-slip conditions (Whitehead & Doering. 2011 Ultimate state of two-dimensional Rayleigh–Bénard convection between free-slip fixed-temperature boundaries. Phys. Rev. Lett. 106 , 244501) and the classical Doering–Constantin R a 1 2 bound (Doering & Constantin. 1996 Variational bounds on energy dissipation in incompressible flows. III. Convection. Phys. Rev. E 53 , 5957–5981). This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 1)’. 
    more » « less
  4. The interplay between convective, rotational and magnetic forces defines the dynamics within the electrically conducting regions of planets and stars. Yet their triadic effects are separated from one another in most studies, arguably due to the richness of each subset. In a single laboratory experiment, we apply a fixed heat flux, two different magnetic field strengths and one rotation rate, allowing us to chart a continuous path through Rayleigh–Bénard convection (RBC), two regimes of magnetoconvection, rotating convection and two regimes of rotating magnetoconvection, before finishing back at RBC. Dynamically rapid transitions are determined to exist between jump rope vortex states, thermoelectrically driven magnetoprecessional modes, mixed wall- and oscillatory-mode rotating convection and a novel magnetostrophic wall mode. Thus, our laboratory ‘pub crawl’ provides a coherent intercomparison of the broadly varying responses arising as a function of the magnetorotational forces imposed on a liquid-metal convection system. 
    more » « less
  5. We analyse the results of direct numerical simulations of rotating convection in spherical shell geometries with stress-free boundary conditions, which develop strong zonal flows. Both the Ekman number and the Rayleigh number are varied. We find that the asymptotic theory for rapidly rotating convection can be used to predict the Ekman number dependence of each term in the governing equations, along with the convective flow speeds and the dominant length scales. Using a balance between the Reynolds stress and the viscous stress, together with the asymptotic scaling for the convective velocity, we derive an asymptotic prediction for the scaling behaviour of the zonal flow with respect to the Ekman number, which is supported by the numerical simulations. We do not find evidence of distinct asymptotic scalings for the buoyancy and viscous forces and, in agreement with previous results from asymptotic plane layer models, we find that the ratio of the viscous force to the buoyancy force increases with Rayleigh number. Thus, viscosity remains non-negligible and we do not observe a trend towards a diffusion-free scaling behaviour within the rapidly rotating regime. 
    more » « less