Recent direct numerical simulations (DNS) and computations of exact steady solutions suggest that the heat transport in Rayleigh–Bénard convection (RBC) exhibits the classical 1 / 3 scaling as the Rayleigh number R a → ∞ with Prandtl number unity, consistent with Malkus–Howard’s marginally stable boundary layer theory. Here, we construct conditional upper and lower bounds for heat transport in two-dimensional RBC subject to a physically motivated marginal linear-stability constraint. The upper estimate is derived using the Constantin–Doering–Hopf (CDH) variational framework for RBC with stress-free boundary conditions, while the lower estimate is developed for both stress-free and no-slip boundary conditions. The resulting optimization problems are solved numerically using a time-stepping algorithm. Our results indicate that the upper heat-flux estimate follows the same 5 / 12 scaling as the rigorous CDH upper bound for the two-dimensional stress-free case, indicating that the linear-stability constraint fails to modify the boundary-layer thickness of the mean temperature profile. By contrast, the lower estimate successfully captures the 1 / 3 scaling for both the stress-free and no-slip cases. These estimates are tested using marginally-stable equilibrium solutions obtained under the quasi-linear approximation, steady roll solutions and DNS data. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 1)’.
more »
« less
Bounds on heat flux for Rayleigh–Bénard convection between Navier-slip fixed-temperature boundaries
We study two-dimensional Rayleigh–Bénard convection with Navier-slip, fixed temperature boundary conditions and establish bounds on the Nusselt number. As the slip-length varies with Rayleigh number R a , this estimate interpolates between the Whitehead–Doering bound by R a 5 12 for free-slip conditions (Whitehead & Doering. 2011 Ultimate state of two-dimensional Rayleigh–Bénard convection between free-slip fixed-temperature boundaries. Phys. Rev. Lett. 106 , 244501) and the classical Doering–Constantin R a 1 2 bound (Doering & Constantin. 1996 Variational bounds on energy dissipation in incompressible flows. III. Convection. Phys. Rev. E 53 , 5957–5981). This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 1)’.
more »
« less
- Award ID(s):
- 2106233
- PAR ID:
- 10327733
- Date Published:
- Journal Name:
- Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
- Volume:
- 380
- Issue:
- 2225
- ISSN:
- 1364-503X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Rayleigh–Bénard convection (RBC) and Taylor–Couette flow (TCF) are two paradigmatic fluid dynamical systems frequently discussed together because of their many similarities despite their different geometries and forcing. Often these analogies require approximations, but in the limit of large radii where TCF becomes rotating plane Couette flow (RPC) exact relations can be established. When the flows are restricted to two spatial independent variables, there is an exact specification that maps the three velocity components in RPC to the two velocity components and one temperature field in RBC. Using this, we deduce several relations between both flows: (i) heat and angular momentum transport differ by $$(1-R_{\Omega })$$ , explaining why angular momentum transport is not symmetric around $$R_{\Omega }=1/2$$ even though the relation between $Ra$ , the Rayleigh number, and $$R_{\Omega }$$ , a non-dimensional measure of the rotation, has this symmetry. This relationship leads to a predicted value of $$R_{\Omega }$$ that maximizes the angular momentum transport that agrees remarkably well with existing numerical simulations of the full three-dimensional system. (ii) One variable in both flows satisfies a maximum principle, i.e. the fields’ extrema occur at the walls. Accordingly, backflow events in shear flow cannot occur in this quasi two-dimensional setting. (iii) For free-slip boundary conditions on the axial and radial velocity components, previous rigorous analysis for RBC implies that the azimuthal momentum transport in RPC is bounded from above by $$Re_S^{5/6}$$ , where $$Re_S$$ is the shear Reynolds number, with a scaling exponent smaller than the anticipated $$Re_S^1$$ .more » « less
-
Abstract The Rayleigh–Bénard system with stress-free boundary conditions is shown to have a global attractor in each affine space where velocity has fixed spatial average. The physical problem is shown to be equivalent to one with periodic boundary conditions and certain symmetries. This enables a Gronwall estimate on enstrophy. That estimate is then used to bound the L 2 norm of the temperature gradient on the global attractor, which, in turn, is used to find a bounding region for the attractor in the enstrophy–palinstrophy plane. All final bounds are algebraic in the viscosity and thermal diffusivity, a significant improvement over previously established estimates. The sharpness of the bounds are tested with numerical simulations.more » « less
-
Abstract We consider the incompressible 3D Navier–Stokes equations subject to a shear induced by noisy movement of part of the boundary. The effect of the noise is quantified by upper bounds on the first two moments of the dissipation rate. The expected value estimate is consistent with the Kolmogorov dissipation law, recovering an upper bound as in (Doering and Constantin 1992 Phys. Rev. Lett. 69 1648) for the deterministic case. The movement of the boundary is given by an Ornstein–Uhlenbeck process; a potential for over-dissipation is noted if the Ornstein–Uhlenbeck process were replaced by the Wiener process.more » « less
-
null (Ed.)Steady two-dimensional Rayleigh–Bénard convection between stress-free isothermal boundaries is studied via numerical computations. We explore properties of steady convective rolls with aspect ratios $${\rm \pi} /5\leqslant \varGamma \leqslant 4{\rm \pi}$$ , where $$\varGamma$$ is the width-to-height ratio for a pair of counter-rotating rolls, over eight orders of magnitude in the Rayleigh number, $$10^3\leqslant Ra\leqslant 10^{11}$$ , and four orders of magnitude in the Prandtl number, $$10^{-2}\leqslant Pr\leqslant 10^2$$ . At large $Ra$ where steady rolls are dynamically unstable, the computed rolls display $$Ra \rightarrow \infty$$ asymptotic scaling. In this regime, the Nusselt number $Nu$ that measures heat transport scales as $$Ra^{1/3}$$ uniformly in $Pr$ . The prefactor of this scaling depends on $$\varGamma$$ and is largest at $$\varGamma \approx 1.9$$ . The Reynolds number $Re$ for large- $Ra$ rolls scales as $$Pr^{-1} Ra^{2/3}$$ with a prefactor that is largest at $$\varGamma \approx 4.5$$ . All of these large- $Ra$ features agree quantitatively with the semi-analytical asymptotic solutions constructed by Chini & Cox ( Phys. Fluids , vol. 21, 2009, 083603). Convergence of $Nu$ and $Re$ to their asymptotic scalings occurs more slowly when $Pr$ is larger and when $$\varGamma$$ is smaller.more » « less