skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structural basis of sequestration of the anti-Shine-Dalgarno sequence in the Bacteroidetes ribosome
Abstract Genomic studies have indicated that certain bacterial lineages such as the Bacteroidetes lack Shine-Dalgarno (SD) sequences, and yet with few exceptions ribosomes of these organisms carry the canonical anti-SD (ASD) sequence. Here, we show that ribosomes purified from Flavobacterium johnsoniae, a representative of the Bacteroidetes, fail to recognize the SD sequence of mRNA in vitro. A cryo-electron microscopy structure of the complete 70S ribosome from F. johnsoniae at 2.8 Å resolution reveals that the ASD is sequestered by ribosomal proteins bS21, bS18 and bS6, explaining the basis of ASD inhibition. The structure also uncovers a novel ribosomal protein—bL38. Remarkably, in F. johnsoniae and many other Flavobacteriia, the gene encoding bS21 contains a strong SD, unlike virtually all other genes. A subset of Flavobacteriia have an alternative ASD, and in these organisms the fully complementary sequence lies upstream of the bS21 gene, indicative of natural covariation. In other Bacteroidetes classes, strong SDs are frequently found upstream of the genes for bS21 and/or bS18. We propose that these SDs are used as regulatory elements, enabling bS21 and bS18 to translationally control their own production.  more » « less
Award ID(s):
2029502
PAR ID:
10282651
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nucleic Acids Research
Volume:
49
Issue:
1
ISSN:
0305-1048
Page Range / eLocation ID:
547 to 567
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ribosomes of Bacteroidia fail to recognize Shine–Dalgarno (SD) sequences due to sequestration of the 3′ tail of the 16S rRNA on the 30S platform. Yet in these organisms, theprfBgene typically contains the programmed +1 frameshift site with its characteristic SD sequence. Here, we investigateprfBautoregulation inFlavobacterium johnsoniae, a member of the Bacteroidia. We find that the efficiency ofprfBframeshifting inF. johnsoniaeis low (∼7%) relative to that inEscherichia coli(∼50%). Mutation or truncation of bS21 inF. johnsoniaeincreases frameshifting substantially, suggesting that anti-SD (ASD) sequestration is responsible for the reduced efficiency. The frameshift site of certain Flavobacteriales, such asWinogradskyella psychrotolerans, has no SD. InF. johnsoniae, thisW. psychrotoleranssequence supports frameshifting as well as the native sequence, and mutation of bS21 causes no enhancement. These data suggest thatprfBframeshifting normally occurs without SD–ASD pairing, at least under optimal laboratory growth conditions. Chromosomal mutations that remove the frameshift or ablate the SD confer subtle growth defects in the presence of paraquat or streptomycin, respectively, indicating that both the autoregulatory mechanism and the SD element contribute toF. johnsoniaecell fitness. Analysis ofprfBframeshift sites across 2686 representative bacteria shows loss of the SD sequence in many clades, with no obvious relationship to genome-wide SD usage. These data reveal unexpected variation in the mechanism of frameshifting and identify another group of organisms, the Verrucomicrobiales, that globally lack SD sequences. 
    more » « less
  2. Abstract Ribosomes of Bacteroidia (formerly Bacteroidetes) fail to recognize Shine-Dalgarno (SD) sequences even though they harbor the anti-SD (ASD) of 16S rRNA. Inhibition of SD-ASD pairing is due to sequestration of the 3’ tail of 16S rRNA in a pocket formed by bS21, bS18, and bS6 on the 30S platform. Interestingly, in many Flavobacteriales, the gene encoding bS21, rpsU, contains an extended SD sequence. In this work, we present genetic and biochemical evidence that bS21 synthesis in Flavobacterium johnsoniae is autoregulated via a subpopulation of ribosomes that specifically lack bS21. Mutation or depletion of bS21 in the cell increases translation of reporters with strong SD sequences, such as rpsU’-gfp, but has no effect on other reporters. Purified ribosomes lacking bS21 (or its C-terminal region) exhibit higher rates of initiation on rpsU mRNA and lower rates of initiation on other (SD-less) mRNAs than control ribosomes. The mechanism of autoregulation depends on extensive pairing between mRNA and 16S rRNA, and exceptionally strong SD sequences, with predicted pairing free energies of < –13 kcal/mol, are characteristic of rpsU across the Bacteroidota. This work uncovers a clear example of specialized ribosomes in bacteria. 
    more » « less
  3. The anti-Shine-Dalgarno (ASD) sequence of 16S rRNA is highly conserved across Bacteria, and yet usage of Shine-Dalgarno (SD) sequences in mRNA varies dramatically, depending on the lineage. Here, we compared the effects of ASD mutagenesis in Escherichia coli , a Gammaproteobacteria which commonly employs SD sequences, and Flavobacterium johnsoniae , a Bacteroidia which rarely does. In E. coli , 30S subunits carrying any single substitution at positions 1,535–1,539 confer dominant negative phenotypes, whereas subunits with mutations at positions 1,540–1,542 are sufficient to support cell growth. These data suggest that CCUCC (1,535–1,539) represents the functional core of the element in E. coli . In F. johnsoniae , deletion of three ribosomal RNA ( rrn ) operons slowed growth substantially, a phenotype largely rescued by a plasmid-borne copy of the rrn operon. Using this complementation system, we found that subunits with single mutations at positions 1,535–1,537 are as active as control subunits, in sharp contrast to the E. coli results. Moreover, subunits with quadruple substitution or complete replacement of the ASD retain substantial, albeit reduced, activity. Sedimentation analysis revealed that these mutant subunits are overrepresented in the subunit fractions and underrepresented in polysome fractions, suggesting some defect in 30S biogenesis and/or translation initiation. Nonetheless, our collective data indicate that the ASD plays a much smaller role in F. johnsoniae than in E. coli , consistent with SD usage in the two organisms. 
    more » « less
  4. Champion, Patricia A. (Ed.)
    ABSTRACT The molecular machine necessary for protein synthesis, the ribosome, is generally considered constitutively functioning and lacking any inherent regulatory capacity. Yet ribosomes are commonly heterogeneous in composition and the impact of ribosome heterogeneity on translation is not well understood. Here, we determined that changes in ribosome protein composition govern gene expression in the intracellular bacterial pathogen Francisella tularensis . F. tularensis encodes three distinct homologs for bS21, a ribosomal protein involved in translation initiation, and analysis of purified F. tularensis ribosomes revealed they are heterogeneous with respect to bS21. The loss of one homolog, bS21-2, resulted in significant changes to the cellular proteome unlinked to changes in the transcriptome. Among the reduced proteins were components of the type VI secretion system (T6SS), an essential virulence factor encoded by the Francisella Pathogenicity Island. Furthermore, loss of bS21-2 led to an intramacrophage growth defect. Although multiple bS21 homologs complemented the loss of bS21-2 with respect to T6SS protein abundance, bS21-2 was uniquely necessary for robust intramacrophage growth, suggesting bS21-2 modulates additional virulence gene(s) distinct from the T6SS. Our results indicate that ribosome composition in F. tularensis , either directly or indirectly, posttranscriptionally modulates gene expression and virulence. Our findings are consistent with a model in which bS21 homologs function as posttranscriptional regulators, allowing preferential translation of specific subsets of mRNAs, likely at the stage of translation initiation. This work also raises the possibility that bS21 in other organisms may function similarly and that ribosome heterogeneity may permit many bacteria to posttranscriptionally regulate gene expression. IMPORTANCE While bacterial ribosomes are commonly heterogeneous in composition (e.g., incorporating different homologs for a ribosomal protein), how heterogeneity impacts translation is unclear. We found that the intracellular human pathogen Francisella tularensis has heterogeneous ribosomes, incorporating one of three homologs for ribosomal protein bS21. Furthermore, one bS21 homolog posttranscriptionally governs the expression of the F. tularensis type VI secretion system, an essential virulence factor. This bS21 homolog is also uniquely important for robust intracellular growth. Our data support a model in which bS21 heterogeneity leads to modulation of translation, providing another source of posttranscriptional gene regulation. Regulation of translation by bS21, or other sources of ribosomal heterogeneity, may be a conserved mechanism to control gene expression across the bacterial phylogeny. 
    more » « less
  5. Ribosomes are essential for protein synthesis in all organisms and their biogenesis and number are tightly controlled to maintain homeostasis in changing environmental conditions. While ribosome assembly and quality control mechanisms have been extensively studied, our understanding of ribosome degradation is limited. In yeast or animal cells, ribosomes are degraded after transfer into the vacuole or lysosome by ribophagy or nonselective autophagy, and ribosomal RNA can also be transferred directly across the lysosomal membrane by RNautophagy. In plants, ribosomal RNA is degraded by the vacuolar T2 ribonuclease RNS2 after transport by autophagy-related mechanisms, although it is unknown if a selective ribophagy pathway exists in plants. In this review, we describe mechanisms of turnover of ribosomal components in animals and yeast, and, then, discuss potential pathways for degradation of ribosomal RNA and protein within the vacuole in plants. 
    more » « less