skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Ribosomal Protein Homolog Governs Gene Expression and Virulence in a Bacterial Pathogen
ABSTRACT The molecular machine necessary for protein synthesis, the ribosome, is generally considered constitutively functioning and lacking any inherent regulatory capacity. Yet ribosomes are commonly heterogeneous in composition and the impact of ribosome heterogeneity on translation is not well understood. Here, we determined that changes in ribosome protein composition govern gene expression in the intracellular bacterial pathogen Francisella tularensis . F. tularensis encodes three distinct homologs for bS21, a ribosomal protein involved in translation initiation, and analysis of purified F. tularensis ribosomes revealed they are heterogeneous with respect to bS21. The loss of one homolog, bS21-2, resulted in significant changes to the cellular proteome unlinked to changes in the transcriptome. Among the reduced proteins were components of the type VI secretion system (T6SS), an essential virulence factor encoded by the Francisella Pathogenicity Island. Furthermore, loss of bS21-2 led to an intramacrophage growth defect. Although multiple bS21 homologs complemented the loss of bS21-2 with respect to T6SS protein abundance, bS21-2 was uniquely necessary for robust intramacrophage growth, suggesting bS21-2 modulates additional virulence gene(s) distinct from the T6SS. Our results indicate that ribosome composition in F. tularensis , either directly or indirectly, posttranscriptionally modulates gene expression and virulence. Our findings are consistent with a model in which bS21 homologs function as posttranscriptional regulators, allowing preferential translation of specific subsets of mRNAs, likely at the stage of translation initiation. This work also raises the possibility that bS21 in other organisms may function similarly and that ribosome heterogeneity may permit many bacteria to posttranscriptionally regulate gene expression. IMPORTANCE While bacterial ribosomes are commonly heterogeneous in composition (e.g., incorporating different homologs for a ribosomal protein), how heterogeneity impacts translation is unclear. We found that the intracellular human pathogen Francisella tularensis has heterogeneous ribosomes, incorporating one of three homologs for ribosomal protein bS21. Furthermore, one bS21 homolog posttranscriptionally governs the expression of the F. tularensis type VI secretion system, an essential virulence factor. This bS21 homolog is also uniquely important for robust intracellular growth. Our data support a model in which bS21 heterogeneity leads to modulation of translation, providing another source of posttranscriptional gene regulation. Regulation of translation by bS21, or other sources of ribosomal heterogeneity, may be a conserved mechanism to control gene expression across the bacterial phylogeny.  more » « less
Award ID(s):
1655221
PAR ID:
10437631
Author(s) / Creator(s):
;
Editor(s):
Champion, Patricia A.
Date Published:
Journal Name:
Journal of Bacteriology
Volume:
204
Issue:
10
ISSN:
0021-9193
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Moreno, Silvia N. (Ed.)
    ABSTRACT During their parasitic life cycle, through sandflies and vertebrate hosts, Leishmania parasites confront strikingly different environments, including abrupt changes in pH and temperature, to which they must rapidly adapt. These adaptations include alterations in Leishmania gene expression, metabolism, and morphology, allowing them to thrive as promastigotes in the sandfly and as intracellular amastigotes in the vertebrate host. A critical aspect of Leishmania metabolic adaptation to these changes is maintenance of efficient mitochondrial function in the hostile vertebrate environment. Such functions, including generation of ATP, depend upon the expression of many mitochondrial proteins, including subunits of cytochrome c oxidase (COX). Significantly, under mammalian temperature conditions, expression of Leishmania major COX subunit IV (LmCOX4) and virulence are dependent upon two copies of LACK , a gene that encodes the ribosome-associated scaffold protein, LACK ( Leishmania ortholog of RACK1 [receptor for activated C kinase]). Targeted replacement of an endogenous LACK copy with a putative ribosome-binding motif-disrupted variant (LACK R34D35G36 →LACK D34D35E36 ) resulted in thermosensitive parasites that showed diminished LmCOX4 expression, mitochondrial fitness, and replication in macrophages. Surprisingly, despite these phenotypes, LACK D34D35E36 associated with monosomes and polysomes and showed no major impairment of global protein synthesis. Collectively, these data suggest that wild-type (WT) LACK orchestrates robust LmCOX4 expression and mitochondrial fitness to ensure parasite virulence, via optimized functional interactions with the ribosome. IMPORTANCE Leishmania parasites are trypanosomatid protozoans that persist in infected human hosts to cause a spectrum of pathologies, from cutaneous and mucocutaneous manifestations to visceral leishmaniasis caused by Leishmania donovani . The latter is usually fatal if not treated. Persistence of L. major in the mammalian host depends upon maintaining gene-regulatory programs to support essential parasite metabolic functions. These include expression and assembly of mitochondrial L. major cytochrome c oxidase (LmCOX) subunits, important for Leishmania ATP production. Significantly, under mammalian conditions, WT levels of LmCOX subunits require threshold levels of the Leishmania ribosome-associated scaffold protein, LACK. Unexpectedly, we find that although disruption of LACK’s putative ribosome-binding motif does not grossly perturb ribosome association or global protein synthesis, it nonetheless impairs COX subunit expression, mitochondrial function, and virulence. Our data indicate that the quality of LACK’s interaction with Leishmania ribosomes is critical for LmCOX subunit expression and parasite mitochondrial function in the mammalian host. Collectively, these findings validate LACK’s ribosomal interactions as a potential therapeutic target. 
    more » « less
  2. Burbank, Lindsey Price (Ed.)
    ABSTRACT Type VI secretion system (T6SS) is a versatile, contact-dependent contractile nano-weapon in Gram-negative bacteria that fires proteinaceous effector molecules directly into prokaryotic and eukaryotic cells aiding in manipulation of the host and killing of competitors in complex niches. In plant pathogenic xanthomonads, T6SS has been demonstrated to play these diverse roles in individual pathosystems. However, the molecular network underlying the regulation of T6SS is still elusive inXanthomonasspp. To bridge this knowledge gap, we conducted anin vitrotranscriptome screen using plant apoplast mimicking minimal medium, XVM2 medium, to decipher the effect oftssMdeletion, a core gene belonging to T6SS-cluster i3*, on the regulation of gene expression inXanthomonas perforansstrain AL65. Transcriptomic data revealed that a total of 277 and 525 genes were upregulated, while 307 and 392 genes were downregulated in the mutant strain after 8 and 16 hours of growth in XVM2 medium. The transcript abundance of several genes associated with flagellum and pilus biogenesis as well as type III secretion system was downregulated in the mutant strain. Deletion oftssMof cluster-i3* resulted in upregulation of several T6SS genes belonging to cluster-i3*** and genes involved in biofilm and cell wall biogenesis. Similarly, transcription regulators likerpoN, Pho regulon,rpoE, andcsrAwere identified to be upregulated in the mutant strain. Our results suggest that T6SS modulates the expression of global regulators likecsrA,rpoN, andphoregulons, triggering a signaling cascade, and co-ordinates the expression of suite of virulence factors, stress response genes, and metabolic genes. IMPORTANCET6SS has received attention due to its significance in mediating interorganismal competition through contact-dependent release of effector molecules into prokaryotic and eukaryotic cells. Reverse-genetic studies have indicated the role of T6SS in virulence in a variety of plant pathogenic bacteria, including the one studied here,Xanthomonas. However, it is not clear whether such effect on virulence is merely due to a shift in the microbiome-mediated protection or if T6SS is involved in a complex virulence regulatory network. In this study, we conducted in vitro transcriptome profiling in minimal medium to decipher the signaling pathways regulated by tssM-i3* inX. perforansAL65. We show that TssM-i3* regulates the expression of a suite of genes associated with virulence and metabolism either directly or indirectly by altering the transcription of several regulators. These findings further expand our knowledge on the intricate molecular circuits regulated by T6SS in phytopathogenic bacteria. 
    more » « less
  3. ABSTRACT Microbial communities are shaped by interactions among their constituent members. Some Gram-negative bacteria employ type VI secretion systems (T6SSs) to inject protein toxins into neighboring cells. These interactions have been theorized to affect the composition of host-associated microbiomes, but the role of T6SSs in the evolution of gut communities is not well understood. We report the discovery of two T6SSs and numerous T6SS-associated Rhs toxins within the gut bacteria of honey bees and bumble bees. We sequenced the genomes of 28 strains of Snodgrassella alvi , a characteristic bee gut microbe, and found tremendous variability in their Rhs toxin complements: altogether, these strains appear to encode hundreds of unique toxins. Some toxins are shared with Gilliamella apicola , a coresident gut symbiont, implicating horizontal gene transfer as a source of toxin diversity in the bee gut. We use data from a transposon mutagenesis screen to identify toxins with antibacterial function in the bee gut and validate the function and specificity of a subset of these toxin and immunity genes in Escherichia coli . Using transcriptome sequencing, we demonstrate that S. alvi T6SSs and associated toxins are upregulated in the gut environment. We find that S. alvi Rhs loci have a conserved architecture, consistent with the C-terminal displacement model of toxin diversification, with Rhs toxins, toxin fragments, and cognate immunity genes that are expressed and confer strong fitness effects in vivo . Our findings of T6SS activity and Rhs toxin diversity suggest that T6SS-mediated competition may be an important driver of coevolution within the bee gut microbiota. IMPORTANCE The structure and composition of host-associated bacterial communities are of broad interest, because these communities affect host health. Bees have a simple, conserved gut microbiota, which provides an opportunity to explore interactions between species that have coevolved within their host over millions of years. This study examined the role of type VI secretion systems (T6SSs)—protein complexes used to deliver toxic proteins into bacterial competitors—within the bee gut microbiota. We identified two T6SSs and diverse T6SS-associated toxins in bacterial strains from bees. Expression of these genes is increased in bacteria in the bee gut, and toxin and immunity genes demonstrate antibacterial and protective functions, respectively, when expressed in Escherichia coli . Our results suggest that coevolution among bacterial species in the bee gut has favored toxin diversification and maintenance of T6SS machinery, and demonstrate the importance of antagonistic interactions within host-associated microbial communities. 
    more » « less
  4. null (Ed.)
    Abstract Genomic studies have indicated that certain bacterial lineages such as the Bacteroidetes lack Shine-Dalgarno (SD) sequences, and yet with few exceptions ribosomes of these organisms carry the canonical anti-SD (ASD) sequence. Here, we show that ribosomes purified from Flavobacterium johnsoniae, a representative of the Bacteroidetes, fail to recognize the SD sequence of mRNA in vitro. A cryo-electron microscopy structure of the complete 70S ribosome from F. johnsoniae at 2.8 Å resolution reveals that the ASD is sequestered by ribosomal proteins bS21, bS18 and bS6, explaining the basis of ASD inhibition. The structure also uncovers a novel ribosomal protein—bL38. Remarkably, in F. johnsoniae and many other Flavobacteriia, the gene encoding bS21 contains a strong SD, unlike virtually all other genes. A subset of Flavobacteriia have an alternative ASD, and in these organisms the fully complementary sequence lies upstream of the bS21 gene, indicative of natural covariation. In other Bacteroidetes classes, strong SDs are frequently found upstream of the genes for bS21 and/or bS18. We propose that these SDs are used as regulatory elements, enabling bS21 and bS18 to translationally control their own production. 
    more » « less
  5. The 5 ′ untranslated region (UTR) sequence of eukaryotic mRNAs may contain upstream open reading frames (uORFs), which can regulate translation of the main ORF (mORF). The current model of translational regulation by uORFs posits that when a ribosome scans a mRNA and encounters an uORF, translation of that uORF can prevent ribosomes from reaching the mORF and cause decreased mORF translation. In this study, we first observed that rare variants in the 5 ′ UTR dysregulate maize ( Zea mays L. ) protein abundance. Upon further investigation, we found that rare variants near the start codon of uORFs can repress or derepress mORF translation, causing allelic changes in protein abundance. This finding holds for common variants as well, and common variants that modify uORF start codons also contribute disproportionately to metabolic and whole-plant phenotypes, suggesting that translational regulation by uORFs serves an adaptive function. These results provide evidence for the mechanisms by which natural sequence variation modulates gene expression, and ultimately, phenotype. 
    more » « less