As the renewable penetration in the grid increases, the grid-takes-all-renewable paradigm will no longer be sustainable. We consider a day-ahead (DA) electricity market composed of a renewable generator, a natural gas power plant (NGPP) and a coal power plant (CPP). Each player provides the Independent System Operator (ISO) with their commitment and their asking price. The ISO schedules the generators using a least-cost strategy. Because of the intrinsic uncertainty of the renewable generation, the renewable player might be unable to meet its DA commitment. In the event of a shortfall, the renewable generator incurs a penalty so that the non-renewable sources are not forced to consume the cost of renewable intermittence. It has been recognized that such a penalty can lead to conservative bidding by the renewable generator, which may lead to lower than desired penetration of renewable energy in the grid. We formulate and analyze a contract between the renewable producer and the NGPP so that the NGPP reserves some amount of natural gas to hedge the renewable producer against shortfalls. Expressions for the optimal commitments of the players and for the optimal reserve contract are derived. When a reserve contract is established, we observe an increase both in the average profit of the players involved and in the renewable participation in the market. Thus, we show that a Pareto-optimal contract between market players can improve renewable penetration.
more »
« less
Review of Control Techniques for Wind Energy Systems
In recent years, penetration of renewable energy resources into the power grid has increased significantly. Wind, as a renewable, clean, and abundantly available source of energy, has an important share in the energy mix. However, increasing the penetration of wind power in the power grid can adversely affect the power quality and introduce new operational challenges. This paper discusses issues related to the integration of wind farms in the power system, such as maximum power point tracking, fault ride-through capabilities, interarea and subsynchronous oscillations, and voltage flicker, and provides a review of the existing control strategies to address these issues in Types I, II, III, and IV wind turbines. This paper also identifies challenges and opportunities ahead.
more »
« less
- PAR ID:
- 10282658
- Date Published:
- Journal Name:
- Energies
- Volume:
- 13
- Issue:
- 24
- ISSN:
- 1996-1073
- Page Range / eLocation ID:
- 6666
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Climate change impacts the electric power system by affecting both the load and generation. It is paramount to understand this impact in the context of renewable energy as their market share has increased and will continue to grow. This study investigates the impact of climate change on the supply of renewable energy through applying novel metrics of intermittency, power production and storage required by the renewable energy plants as a function of historical climate data variability. Here we focus on and compare two disparate locations, Palma de Mallorca in the Balearic Islands and Cordova, Alaska. The main results of this analysis of wind, solar radiation and precipitation over the 1950–2020 period show that climate change impacts both the total supply available and its variability. Importantly, this impact is found to vary significantly with location. This analysis demonstrates the feasibility of a process to evaluate the local optimal mix of renewables, the changing needs for energy storage as well as the ability to evaluate the impact on grid reliability regarding both penetration of the increasing renewable resources and changes in the variability of the resource. This framework can be used to quantify the impact on both transmission grids and microgrids and can guide possible mitigation paths.more » « less
-
The growing penetration of renewable resources such as wind and solar into the electric power grid through power electronic inverters is challenging grid protection. Due to the advanced inverter control algorithms, the inverter-based resources present fault responses different from conventional generators, which can fundamentally affect the way that the power grid is protected. This paper studied solar inverter dynamics focused on negative-sequence quantities during the restoration period following a grid disturbance by using a real-time digital simulator. It was found that solar inverters can act as negative-sequence sources to inject negative-sequence currents into the grid during the restoration period. The negative-sequence current can be affected by different operating conditions such as the number of inverters in service, grid strength, and grid fault types. Such negative-sequence responses can adversely impact the performance of protection schemes based on negative-sequence components and potentially cause relay maloperations during the grid restoration period, thus making system protection less secure and reliable.more » « less
-
Climate change is expected to intensify the effects of extreme weather events on power systems and increase the frequency of severe power outages. The large-scale integration of environment-dependent renewables during energy decarbonization could induce increased uncertainty in the supply–demand balance and climate vulnerability of power grids. This Perspective discusses the superimposed risks of climate change, extreme weather events and renewable energy integration, which collectively affect power system resilience. Insights drawn from large-scale spatiotemporal data on historical US power outages induced by tropical cyclones illustrate the vital role of grid inertia and system flexibility in maintaining the balance between supply and demand, thereby preventing catastrophic cascading failures. Alarmingly, the future projections under diverse emission pathways signal that climate hazards — especially tropical cyclones and heatwaves — are intensifying and can cause even greater impacts on the power grids. High-penetration renewable power systems under climate change may face escalating challenges, including more severe infrastructure damage, lower grid inertia and flexibility, and longer post-event recovery. Towards a net-zero future, this Perspective then explores approaches for harnessing the inherent potential of distributed renewables for climate resilience through forming microgrids, aligned with holistic technical solutions such as grid-forming inverters, distributed energy storage, cross-sector interoperability, distributed optimization and climate–energy integrated modelling.more » « less
-
null (Ed.)With the growth in penetration number and power level of renewable energy resources, the need for a compact and high efficient solid state transformer becomes more important. The aim of this paper is to design a compact solid state transformer for microgrid application. The proposed transformer has four ports integrated on a single common core. Thus, it can integrate different renewable energy resources and energy storage systems. The transformer is operating at 50kHz switching frequency, and each port can handle 25kW rated power. In this paper, the ports are chosen to represent a realistic industrial microgrid model consisting of grid, energy storage system, photovoltaic system, and load. The grid port is designed to operate at 4160V AC, while the other three ports operate at 400V. Moreover, the grid, energy storage, and photovoltaic ports are active ports with dual active bridge topologies, while the load port is a passive port with full bridge rectifier one. In this paper, an extensive and complete design and modeling of the entire solid state transformer is presented. The proposed design is first validated with simulation results, and then the proposed transformer is implemented. Some preliminary experimental tests are also performed and the obtained results are reported.more » « less