skip to main content


Title: Review of Control Techniques for Wind Energy Systems
In recent years, penetration of renewable energy resources into the power grid has increased significantly. Wind, as a renewable, clean, and abundantly available source of energy, has an important share in the energy mix. However, increasing the penetration of wind power in the power grid can adversely affect the power quality and introduce new operational challenges. This paper discusses issues related to the integration of wind farms in the power system, such as maximum power point tracking, fault ride-through capabilities, interarea and subsynchronous oscillations, and voltage flicker, and provides a review of the existing control strategies to address these issues in Types I, II, III, and IV wind turbines. This paper also identifies challenges and opportunities ahead.  more » « less
Award ID(s):
1953213 1953198
NSF-PAR ID:
10282658
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Energies
Volume:
13
Issue:
24
ISSN:
1996-1073
Page Range / eLocation ID:
6666
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The growing integration of distributed energy resources (DERs) in distribution grids raises various reliability issues due to DER's uncertain and complex behaviors. With large-scale DER penetration in distribution grids, traditional outage detection methods, which rely on customers report and smart meters' “last gasp” signals, will have poor performance, because renewable generators and storage and the mesh structure in urban distribution grids can continue supplying power after line outages. To address these challenges, we propose a data-driven outage monitoring approach based on the stochastic time series analysis with a theoretical guarantee. Specifically, we prove via power flow analysis that dependency of time-series voltage measurements exhibits significant statistical changes after line outages. This makes the theory on optimal change-point detection suitable to identify line outages. However, existing change point detection methods require post-outage voltage distribution, which are unknown in distribution systems. Therefore, we design a maximum likelihood estimator to directly learn distribution pa-rameters from voltage data. We prove the estimated parameters-based detection also achieves optimal performance, making it extremely useful for fast distribution grid outage identifications. Furthermore, since smart meters have been widely installed in distribution grids and advanced infrastructure (e.g., PMU) has not widely been available, our approach only requires voltage magnitude for quick outage identification. Simulation results show highly accurate outage identification in eight distribution grids with 17 configurations with and without DERs using smart meter data. 
    more » « less
  2. Climate change impacts the electric power system by affecting both the load and generation. It is paramount to understand this impact in the context of renewable energy as their market share has increased and will continue to grow. This study investigates the impact of climate change on the supply of renewable energy through applying novel metrics of intermittency, power production and storage required by the renewable energy plants as a function of historical climate data variability. Here we focus on and compare two disparate locations, Palma de Mallorca in the Balearic Islands and Cordova, Alaska. The main results of this analysis of wind, solar radiation and precipitation over the 1950–2020 period show that climate change impacts both the total supply available and its variability. Importantly, this impact is found to vary significantly with location. This analysis demonstrates the feasibility of a process to evaluate the local optimal mix of renewables, the changing needs for energy storage as well as the ability to evaluate the impact on grid reliability regarding both penetration of the increasing renewable resources and changes in the variability of the resource. This framework can be used to quantify the impact on both transmission grids and microgrids and can guide possible mitigation paths. 
    more » « less
  3. null (Ed.)
    With the growth in penetration number and power level of renewable energy resources, the need for a compact and high efficient solid state transformer becomes more important. The aim of this paper is to design a compact solid state transformer for microgrid application. The proposed transformer has four ports integrated on a single common core. Thus, it can integrate different renewable energy resources and energy storage systems. The transformer is operating at 50kHz switching frequency, and each port can handle 25kW rated power. In this paper, the ports are chosen to represent a realistic industrial microgrid model consisting of grid, energy storage system, photovoltaic system, and load. The grid port is designed to operate at 4160V AC, while the other three ports operate at 400V. Moreover, the grid, energy storage, and photovoltaic ports are active ports with dual active bridge topologies, while the load port is a passive port with full bridge rectifier one. In this paper, an extensive and complete design and modeling of the entire solid state transformer is presented. The proposed design is first validated with simulation results, and then the proposed transformer is implemented. Some preliminary experimental tests are also performed and the obtained results are reported. 
    more » « less
  4. Proper integration of energy storage systems (ESS) into existing or future grids will depend on the effectiveness of models which seek optimal placement and sizing at the transmission and distribution levels. Current literature reviews reveal sizing methodologies can be improved to ease infrastructure integration, and those works with models useful for planning focus solely on micro-grids, wind power and forecasting, photovoltaics, or small communities. It is of interest to create an efficient, reliable ESS sizing model for large scale grids that contains interpretable models, has less sensitivity due to low model uncertainty, yet still is dependable due to an imposed reliability criterion. This work determined the minimum feasible size ESS to satisfy reserve requirements for a power grid with a high penetration of renewable sources. Results showed imposing a reliability criterion through loss of load expectation (LOLE) and energy index of reliability (EIR) resulted in more conservative capacity needs. 
    more » « less
  5. Climate change is expected to intensify the effects of extreme weather events on power systems and increase the frequency of severe power outages. The large-scale integration of environment-dependent renewables during energy decarbonization could induce increased uncertainty in the supply–demand balance and climate vulnerability of power grids. This Perspective discusses the superimposed risks of climate change, extreme weather events and renewable energy integration, which collectively affect power system resilience. Insights drawn from large-scale spatiotemporal data on historical US power outages induced by tropical cyclones illustrate the vital role of grid inertia and system flexibility in maintaining the balance between supply and demand, thereby preventing catastrophic cascading failures. Alarmingly, the future projections under diverse emission pathways signal that climate hazards — especially tropical cyclones and heatwaves — are intensifying and can cause even greater impacts on the power grids. High-penetration renewable power systems under climate change may face escalating challenges, including more severe infrastructure damage, lower grid inertia and flexibility, and longer post-event recovery. Towards a net-zero future, this Perspective then explores approaches for harnessing the inherent potential of distributed renewables for climate resilience through forming microgrids, aligned with holistic technical solutions such as grid-forming inverters, distributed energy storage, cross-sector interoperability, distributed optimization and climate–energy integrated modelling. 
    more » « less