This letter proposes a data-driven inertia estimator for inverter-based resources (IBRs) with grid-forming control. It is able to track both constant and time-varying inertia. By utilizing the Thevenin equivalent, the virtual frequency inside IBRs is first estimated with only its terminal voltage and current phasor measurements. The virtual frequency and the measurements are then used together to derive the state-space swing equation model. Then, an enhanced adaptive Unscented Kalman filter (EAUKF) is developed to estimate IBR inertia. Numerical results on the modified IEEE 39-bus power system demonstrate that the proposed inertia estimator remarkably outperforms the existing state-of-art methods both in tracking speed and accuracy.
more »
« less
Frequency Response Improvement of PMSG Wind Turbines Using a Washout Filter
High integration of renewable energy resources, such as wind turbines, to the power grid decreases the power system inertia. To improve the frequency response of a low-inertia system, virtual inertia approach can be used. This letter proposes a control method to decrease the frequency transients and restore frequency to its nominal value. A wind turbine usually works based on maximum power point tracking (MPPT) curves to achieve the maximum power. In this letter, the proposed controller uses a non-MPPT method to leave power for frequency regulation during transients. Moreover, it uses a washout filter-based method to remove the steady-state error in the frequency. Simulation results in the PSCAD environment validate the improved performance of the proposed method during load changes by comparing it with the MPPT and non-MPPT methods.
more »
« less
- NSF-PAR ID:
- 10282666
- Date Published:
- Journal Name:
- Energies
- Volume:
- 13
- Issue:
- 18
- ISSN:
- 1996-1073
- Page Range / eLocation ID:
- 4797
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Inertia from rotating masses of generators in power systems influence the instantaneous frequency change when an imbalance between electrical and mechanical power occurs. Renewable energy sources (RES), such as solar and wind power, are connected to the grid via electronic converters. RES connected through converters affect the system's inertia by decreasing it and making it time-varying. This new setting challenges the ability of current control schemes to maintain frequency stability. Proposing adequate controllers for this new paradigm is key for the performance and stability of future power grids. The contribution of this paper is a framework to learn sparse time-invariant frequency controllers in a power system network with a time-varying evolution of rotational inertia. We model power dynamics using a Switched-Affine hybrid system to consider different modes corresponding to different inertia coefficients. We design a controller that uses as features, i.e. input, the systems states. In other words, we design a control proportional to the angles and frequencies. We include virtual inertia in the controllers to ensure stability. One of our findings is that it is possible to restrict communication between the nodes by reducing the number of features in the controller (from 22 to 10 in our case study) without disrupting performance and stability. Furthermore, once communication between nodes has reached a threshold, increasing it beyond this threshold does not improve performance or stability. We find a correlation between optimal feature selection in sparse controllers and the topology of the network.more » « less
-
null (Ed.)With more and more renewable energy resources integrated into the power grid, the system is losing inertia because power electronics-based generators do not provide natural inertia. The low inertia will cause the microgrid to be more sensitive to disturbance and thus a small load change may result in a severe deviation in frequency. Based on the basic VSG algorithm, which is to mimic the characteristic of the traditional synchronous generator, the frequency can be controlled to a stable value faster and more smoothly when there is a fluctuation in the PV power generation and/or load change. However, characteristic of the VSG depends on the system structure in consideration of multiple generations, such as Synchronous Generator (SG), PV and Battery Energy Storage System (BESS), which greatly increases the complexity of applying VSG in practical power system. Furthermore, with BESS-VSG, Maximum Power Point (MPP) operation of PV is guaranteed. In addition, an adaptive VSG method is developed for a microgrid system, and the corresponding simulation in Matlab/Simulink shows the effectiveness of the adaptive VSG method.more » « less
-
null (Ed.)Artificial intelligence methods such as fuzzy logic and particle swarm optimization (PSO) have been applied to maximum power point tracking (MPPT) for solar panels. The P-V curve of a solar panel exhibits multiple peaks under partial shading condition (PSC) when all modules of a solar panel do not receive the same solar irradiation. Although conventional PSO has been shown to perform well under uniform insolation, it is often unable to find the global maximum power point under PSC. Fuzzy adaptive PSO controllers have been proposed for MPPT. However, the controller became computation-intensive in order to adjust the PSO parameters for each particle. In this paper, fuzzy adaptive PSO-based and conventional PSO-based MPPT are compared and evaluated in the aspect of design and performance. A simple fuzzy adaptive PSO controller for MPPT was designed to reach the global optimal point under PSC and uniform irradiation. The controller combines the advantages of both PSO and fuzzy control. The fuzzy controller dynamically adjusts the PSO parameter to improve the convergence speed and global search capability. Since tuning of the PSO parameter is designed to be common for all particles, it reduced the computation complexity. The fuzzy controller’s rule base is designed to obtain a fast transient response and stable steady state response. Design of the fuzzy adaptive PSO-based MPPT is verified with simulation results using a boost converter. The results are evaluated in comparison to the results using a conventional PSO controller under PSC. Simulation shows the fuzzy adaptive PSO-based MPPT is able to improve the global search process and increase the convergency speed. The comparison indicates the settling time using the fuzzy adaptive PSO-based MPPT is 14% faster under PSC on average and 30% faster under uniform irradiation than the settling time using the conventional PSO. Both the fuzzy adaptive and conventional PSO controllers have similar output power tracking accuracy.more » « less
-
As more non-synchronous renewable energy sources (RES) participate in power systems, the system's inertia decreases and becomes time dependent, challenging the ability of existing control schemes to maintain frequency stability. System operators, research laboratories, and academic institutes have expressed the importance to adapt to this new power system paradigm. As one of the potential solutions, virtual inertia has become an active research area. However, power dynamics have been modeled as time-invariant, by not modeling the variability in the system's inertia. To address this, we propose a new modeling framework for power system dynamics to simulate a time-varying evolution of rotational inertia coefficients in a network. We model power dynamics as a hybrid system with discrete modes representing different rotational inertia regimes of the network. We test the performance of two classical controllers from the literature in this new hybrid modeling framework: optimal closed-loop Model Predictive Control (MPC) and virtual inertia placement. Results show that the optimal closed-loop MPC controller (Linear MPC) performs the best in terms of cost; it is 82 percent less expensive than virtual inertia placement. It is also more efficient in terms of energy injected/absorbed to control frequency. To address the lower performance of virtual inertia placement, we then propose a new Dynamic Inertia Placement scheme and we find that it is more efficient in terms of cost (74 percent cheaper) and energy usage, compared to classical inertia placement schemes from the literature.more » « less