skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data-Driven Time-Varying Inertia Estimation of Inverter-Based Resources
This letter proposes a data-driven inertia estimator for inverter-based resources (IBRs) with grid-forming control. It is able to track both constant and time-varying inertia. By utilizing the Thevenin equivalent, the virtual frequency inside IBRs is first estimated with only its terminal voltage and current phasor measurements. The virtual frequency and the measurements are then used together to derive the state-space swing equation model. Then, an enhanced adaptive Unscented Kalman filter (EAUKF) is developed to estimate IBR inertia. Numerical results on the modified IEEE 39-bus power system demonstrate that the proposed inertia estimator remarkably outperforms the existing state-of-art methods both in tracking speed and accuracy.  more » « less
Award ID(s):
2328241 2550498
PAR ID:
10530278
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Power Systems
Volume:
38
Issue:
2
ISSN:
0885-8950
Page Range / eLocation ID:
1795 to 1798
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The decline of conventional synchronous generators in the modern power system is driven by the increasing demand for low-inertia/inertia-less renewable energy sources (RES), consequently leading to the growing integration of inverter-based resources (IBRs) into the power system. The incorporation of low-inertia/inertia-less IBRs makes the monitoring and damping of low-frequency electromechanical oscillations (EMOs) crucial. While Virtual Synchronous Generator (VSG) control introduces virtual inertia into the power system, it does not maximize energy capture from RES as effectively as maximum power point tracking (MPPT) does, as it should maintain a power reserve to provide the inertial support and damping. In this study, switching IBRs between MPPT and VSG controls based on an EMO index (EMOI) threshold is proposed to mitigate the emergence of EMO. The impact of the switching control of IBRs is illustrated for a modified two-area, four-machine power system with two large solar photovoltaic plants. Typical results are presented from a simulation on real-time digital simulator (RTDS) to show improved EMOI. 
    more » « less
  2. As more non-synchronous renewable energy sources (RES) participate in power systems, the system's inertia decreases and becomes time dependent, challenging the ability of existing control schemes to maintain frequency stability. System operators, research laboratories, and academic institutes have expressed the importance to adapt to this new power system paradigm. As one of the potential solutions, virtual inertia has become an active research area. However, power dynamics have been modeled as time-invariant, by not modeling the variability in the system's inertia. To address this, we propose a new modeling framework for power system dynamics to simulate a time-varying evolution of rotational inertia coefficients in a network. We model power dynamics as a hybrid system with discrete modes representing different rotational inertia regimes of the network. We test the performance of two classical controllers from the literature in this new hybrid modeling framework: optimal closed-loop Model Predictive Control (MPC) and virtual inertia placement. Results show that the optimal closed-loop MPC controller (Linear MPC) performs the best in terms of cost; it is 82 percent less expensive than virtual inertia placement. It is also more efficient in terms of energy injected/absorbed to control frequency. To address the lower performance of virtual inertia placement, we then propose a new Dynamic Inertia Placement scheme and we find that it is more efficient in terms of cost (74 percent cheaper) and energy usage, compared to classical inertia placement schemes from the literature. 
    more » « less
  3. This paper discusses the challenges faced by electric power systems due to the increasing use of inverter-based renewable energy resources (IBRs) operating in grid-following mode (GFL) and the limited support they provide for the grid’s reliability and stability. With increased IBRs connected to the grid, electric utilities are increasingly requiring IBRs to behave like traditional grid-forming (GFM) synchronous generators to provide support for inertia, frequency, voltage, black start capability, and more. The paper focuses on developing GFM inverter technologies with L, LC, and LCL filters and investigates the performance of combined GFM and GFL inverters with different filtering mechanisms when supplying different types of loads. It also emphasizes achieving voltage controllability at the point of common coupling of the GFM with the rest of an AC system. EMT simulation is utilized to investigate the interaction of combined GFM and GFL inverters with different filtering mechanisms. The research results will assist electric utilities in ensuring the reliability and stability of electric power systems in the future. 
    more » « less
  4. Virtual inertia based control of renewable energy sources (RESs) helps to enhance the frequency stability of power systems. In this paper, a Control Area Network (CAN) communication-based method is demonstrated to emulate virtual inertia using commercial off-the-shelf inverters. This allows the currently installed systems to be retrofitted with virtual inertia in a cost-effective manner which would allow for higher RES penetration in power systems. The proof-of-concept is demonstrated using a Xantrex XW6048 hybrid inverter/charger and OPAL-RT real-time digital simulator. Results show that CAN-based communication can be an effective way to reduce frequency variations in the power system. 
    more » « less
  5. null (Ed.)
    High integration of renewable energy resources, such as wind turbines, to the power grid decreases the power system inertia. To improve the frequency response of a low-inertia system, virtual inertia approach can be used. This letter proposes a control method to decrease the frequency transients and restore frequency to its nominal value. A wind turbine usually works based on maximum power point tracking (MPPT) curves to achieve the maximum power. In this letter, the proposed controller uses a non-MPPT method to leave power for frequency regulation during transients. Moreover, it uses a washout filter-based method to remove the steady-state error in the frequency. Simulation results in the PSCAD environment validate the improved performance of the proposed method during load changes by comparing it with the MPPT and non-MPPT methods. 
    more » « less