- Award ID(s):
- 1711951
- NSF-PAR ID:
- 10202258
- Date Published:
- Journal Name:
- 2020 IEEE Kansas Power and Energy Conference (KPEC)
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)With the increasing integration of renewable energy, the problems associated with deteriorating grid frequency profile and potential power system instability have become more significant. In this paper, the inertial control algorithm using Virtual Synchronous Generator (VSG) is implemented on type-4 Permanent Magnet Synchronous Generator (PMSG) - wind turbine generator (WTG). The overall nonlinear dynamic model and its small-signal linearization of PMSG-WTG using VSG is established and comprehensively analyzed. Inevitably, the direct application of VSG introduces large inertia which causes conflict between the fast-varying of available wind power and inverter control with slow dynamics, particularly in region 2 of wind turbine. Aiming to address such issue, VSG with multiple virtual rotating masses is proposed in order to improve the active power tracking performance as well as to boost inertial control of a VSG. The inertial responses are verified in a modified 10MVA IEEE 14 bus microgrid system. The assessment of the simulation results demonstrates the applicability of VSG on renewable energy generation units.more » « less
-
Abstract This paper presents the genetic algorithm (GA) and particle swarm optimization (PSO) based frequency regulation for a wind‐based microgrid (MG) using reactive power balance loop. MG, operating from squirrel cage induction generator (SCIG), is employed for exporting the electrical power from wind turbines, and it needs reactive power which may be imported from the grid. Additional reactive power is also required from the grid for the load, directly coupled with such a distributed generator (DG) plant. However, guidelines issued by electric authorities encourage MGs to arrange their own reactive power because such reactive power procurement is defined as a local area problem for power system studies. Despite the higher cost of compensation, static synchronous compensator (STATCOM) is a fast‐acting FACTs device for attending to these reactive power mismatches. Reactive power control can be achieved by controlling reactive current through the STATCOM. This can be achieved with modification in current controller scheme of STATCOM. STATCOM current controller is designed with reactive power load balance for the proposed microgrid in this paper. Further, gain values of the PI controller, required in the STATCOM model, are selected first with classical methods. In this classical method, iterative procedures which are based on integral square error (ISE), integral absolute error (IAE), and integral square of time error (ISTE) criteria are developed using MATLAB programs. System performances are further investigated with GA and PSO based control techniques and their acceptability over classical methods is diagnosed. Results in terms of converter frequency deviation show how the frequency remains under the operating boundaries as allowed by IEEE standards 1159:1995 and 1250:2011 for integrating renewable‐based microgrid with grid. Real and reactive power management and load current total harmonic distortions verify the STATCOM performance in MG. The results are further validated with the help of recent papers in which frequency regulation is investigated for almost similar power system models. The compendium for this work is as following: (i) modelling of wind generator‐based microgrid using MATLAB simulink library, (ii) designing of STATCOM current controller with PI controller, (iii) gain constants estimation using classical, GA and PSO algorithm through a developed m codes and their interfacing with proposed simulink model, (v) dynamic frequency responses for proposed grid connected microgrid during starting and load perturbations, (vi) verification of system performance with the help of obtained real and reactive power management between STATCOM and grid, and (vii) validation of results with available literature.
-
In this paper, a microgrid scenario composed by a PV generator, a battery system and residential loads in a power Hardware-in-the-Loop (HIL) platform is developed and tested. The electrical structure of the system, the component software modelling and hardware implementation are described. This paper proposes an EMS for microgrid power balance and execution of Time of Use (TOU) and load shedding Demand Response (DR) functions. Experimental results of each component of the scenario are shown.more » « less
-
null (Ed.)This paper proposes a distributed rule-based power management strategy for dynamic power balancing and power smoothing in a photovoltaic (PV)/battery-supercapacitor hybrid energy storage system. The system contains a PV system, a battery-supercapacitor hybrid energy storage system (HESS), and a group of loads. Firstly, an active compensation technique is proposed which improves the efficiency of the power smoothing filter. Then, a distributed supervisory control technique is employed that prevents the BESS and SC from SOC violation while maintaining the balance between generation and load. To this end, the system components are divided into three different reactive agents including an HESS agent, a PV agent, and a load agent. These agents react to the system changes by switching their operational mode upon satisfying a predefined rule. To analyse the hybrid dynamical behaviour of the agents and design the supervisory controllers, the agents are modelled in hybrid automata frameworks. It is shown that the proposed distributed approach reduces the complexity of the supervisory control system and increases its scalability compared to its equivalent centralized method. Finally, the performance of the proposed approach is validated using a test system simulated in MATLAB/Simulink.more » « less
-
null (Ed.)The interconnection of distributed energy resources (DERs) in microgrids (MGs) operating in both islanded and grid-connected modes require coordinated control strategies. DERs are interfaced with voltage source inverters (VSIs) enabling interconnection. This paper proposes a load demand sharing scheme for the parallel operation of VSIs in an islanded voltage source inverter-based microgrid (VSI-MG). The ride-through capability of a heavily loaded VSI-MG, where some of the VSIs are fully loaded due to the occurrence of an event is investigated. In developing analytical equations to model the VSI, the concept of virtual synchronous machines (VSM) is applied to enable the VSI mimic the inertia effect of synchronous machines. A power frame transformation (PFT) that takes the line ratios of the MG network into account is also incorporated to yield satisfactory transient responses of both network frequency and bus voltages in the MG network. A Jacobian-based method is then developed to take into account the operational capacity of each VSI in the VSI-MG. The resulting amendable droop control constrains the VSIs within their power capabilities when an event occurs. Simulation results presented within demonstrate the effectiveness of the proposed procedure which has great potential to facilitate efforts in maintaining system reliability and resiliency.more » « less