Abstract. Oxygenated organic molecules (OOMs) play an important role in the formation of atmospheric aerosols. Due to various analytical challenges with respect to measuring organic vapors, uncertainties remain regarding the formation and fate of OOMs. The chemical ionization Orbitrap (CI-Orbitrap) mass spectrometer has recently been shown to be a powerful technique that is able to accurately identify gaseous organic compounds due to its greater mass resolution. Here, we present the ammonium-ion-based CI-Orbitrap (NH4+-Orbitrap) as a technique capable of measuring a wide range of gaseous OOMs. The performance of the NH4+-Orbitrap is compared with that of state-of-the-art mass spectrometers, including a nitrate-ion-based chemical ionization atmospheric pressure interface coupled to a time-of-flight mass spectrometer (NO3--LTOF), a new generation of proton transfer reaction-TOF mass spectrometer (PTR3-TOF), and an iodide-based CI-TOF mass spectrometer equipped with a Filter Inlet for Gases and AEROsols (I−-CIMS). The instruments were deployed simultaneously in the Cosmic Leaving OUtdoors Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN) during the CLOUD14 campaign in 2019. Products generated from α-pinene ozonolysis under various experimental conditions were simultaneously measured by the mass spectrometers. The NH4+-Orbitrap was able to identify the widest range of OOMs (i.e., O ≥ 2), from less-oxidized species to highly oxygenated organic molecules (HOMs). Excellent agreement was found between the NH4+-Orbitrap and the NO3--LTOF with respect to characterizing HOMs and with the PTR3-TOF for the less-oxidized monomeric species. OOM concentrations measured by NH4+-Orbitrap were estimated using calibration factors derived from the OOMs with high time-series correlations during the side-by-side measurements. As with the other mass spectrometry techniques used during this campaign, the detection sensitivity of the NH4+-Orbitrap to OOMs is greatly affected by relative humidity, which may be related to changes in ionization efficiency and/or multiphase chemistry. Overall, this study shows that NH4+-ion-based chemistry associated with the high mass resolution of the Orbitrap mass analyzer can measure almost all inclusive compounds. As a result, it is now possible to cover the entire range of compounds, which can lead to a better understanding of the oxidation processes.
more »
« less
Measurement report: Molecular composition and volatility of gaseous organic compounds in a boreal forest – from volatile organic compounds to highly oxygenated organic molecules
Abstract. The molecular composition and volatility of gaseous organiccompounds were investigated during April–July 2019 at the Station forMeasuring Ecosystem – Atmosphere Relations (SMEAR) II situated in a borealforest in Hyytiälä, southern Finland. In order to obtain a morecomplete picture and full understanding of the molecular composition andvolatility of ambient gaseous organic compounds (from volatile organiccompounds, VOCs, to highly oxygenated organic molecules, HOMs), twodifferent instruments were used. A Vocus proton-transfer-reactiontime-of-flight mass spectrometer (Vocus PTR-ToF; hereafter Vocus) wasdeployed to measure VOCs and less oxygenated VOCs (i.e., OVOCs). Inaddition, a multi-scheme chemical ionization inlet coupled to an atmosphericpressure interface time-of-flight mass spectrometer (MION API-ToF) was usedto detect less oxygenated VOCs (using Br− as the reagent ion; hereafterMION-Br) and more oxygenated VOCs (including HOMs; using NO3- asthe reagent ion; hereafter MION-NO3). The comparison among differentmeasurement techniques revealed that the highest elemental oxygen-to-carbonratios (O : C) of organic compounds were observed by the MION-NO3 (0.9 ± 0.1, average ± 1 standard deviation), followed by the MION-Br(0.8 ± 0.1); lowest O : C ratios were observed by Vocus (0.2 ± 0.1). Diurnal patternsof the measured organic compounds were found to vary among differentmeasurement techniques, even for compounds with the same molecular formula,suggesting contributions of different isomers detected by the differenttechniques and/or fragmentation from different parent compounds inside theinstruments. Based on the complementary molecular information obtained fromVocus, MION-Br, and MION-NO3, a more complete picture of the bulkvolatility of all measured organic compounds in this boreal forest wasobtained. As expected, the VOC class was the most abundant (about 53.2 %), followed by intermediate-volatility organic compounds (IVOCs, about45.9 %). Although condensable organic compounds (low-volatility organiccompounds, LVOCs; extremely low volatility organic compounds, ELVOCs; andultralow-volatility organic compounds, ULVOCs) only comprised about 0.2 %of the total gaseous organic compounds, they play an important role in newparticle formation as shown in previous studies in this boreal forest. Ourstudy shows the full characterization of the gaseous organic compounds inthe boreal forest and the advantages of combining Vocus and MION API-ToF formeasuring ambient organic compounds with different oxidation extents (fromVOCs to HOMs). The results therefore provide a more comprehensiveunderstanding of the molecular composition and volatility of atmosphericorganic compounds as well as new insights into interpreting ambientmeasurements or testing/improving parameterizations in transport and climatemodels.
more »
« less
- Award ID(s):
- 1801897
- PAR ID:
- 10282705
- Date Published:
- Journal Name:
- Atmospheric Chemistry and Physics
- Volume:
- 21
- Issue:
- 11
- ISSN:
- 1680-7324
- Page Range / eLocation ID:
- 8961 to 8977
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract. Highly oxygenated organic molecules (HOMs) contributesubstantially to the formation and growth of atmospheric aerosol particles,which affect air quality, human health and Earth's climate. HOMs are formedby rapid, gas-phase autoxidation of volatile organic compounds (VOCs) suchas α-pinene, the most abundant monoterpene in the atmosphere. Due totheir abundance and low volatility, HOMs can play an important role innew-particle formation (NPF) and the early growth of atmospheric aerosols,even without any further assistance of other low-volatility compounds suchas sulfuric acid. Both the autoxidation reaction forming HOMs and theirNPF rates are expected to be strongly dependent ontemperature. However, experimental data on both effects are limited.Dedicated experiments were performed at the CLOUD (Cosmics Leaving OUtdoorDroplets) chamber at CERN to address this question. In this study, we showthat a decrease in temperature (from +25 to −50 ∘C) results ina reduced HOM yield and reduced oxidation state of the products, whereas theNPF rates (J1.7 nm) increase substantially.Measurements with two different chemical ionization mass spectrometers(using nitrate and protonated water as reagent ion, respectively) providethe molecular composition of the gaseous oxidation products, and atwo-dimensional volatility basis set (2D VBS) model provides their volatilitydistribution. The HOM yield decreases with temperature from 6.2 % at 25 ∘C to 0.7 % at −50 ∘C. However, there is a strongreduction of the saturation vapor pressure of each oxidation state as thetemperature is reduced. Overall, the reduction in volatility withtemperature leads to an increase in the nucleation rates by up to 3orders of magnitude at −50 ∘C compared with 25 ∘C. Inaddition, the enhancement of the nucleation rates by ions decreases withdecreasing temperature, since the neutral molecular clusters have increasedstability against evaporation. The resulting data quantify how the interplaybetween the temperature-dependent oxidation pathways and the associatedvapor pressures affect biogenic NPF at the molecularlevel. Our measurements, therefore, improve our understanding of purebiogenic NPF for a wide range of tropospherictemperatures and precursor concentrations.more » « less
-
Abstract. Volatility and viscosity are important properties of organic aerosols (OA),affecting aerosol processes such as formation, evolution, and partitioning ofOA. Volatility distributions of ambient OA particles have often beenmeasured, while viscosity measurements are scarce. We have previouslydeveloped a method to estimate the glass transition temperature (Tg) ofan organic compound containing carbon, hydrogen, and oxygen. Based onanalysis of over 2400 organic compounds including oxygenated organiccompounds, as well as nitrogen- and sulfur-containing organic compounds, weextend this method to include nitrogen- and sulfur-containing compoundsbased on elemental composition. In addition, parameterizations are developedto predict Tg as a function of volatility and the atomicoxygen-to-carbon ratio based on a negative correlation between Tg andvolatility. This prediction method of Tg is applied to ambientobservations of volatility distributions at 11 field sites. Thepredicted Tg values of OA under dry conditions vary mainly from 290 to 339 Kand the predicted viscosities are consistent with the results of ambientparticle-phase-state measurements in the southeastern US and the Amazonianrain forest. Reducing the uncertainties in measured volatility distributionswould improve predictions of viscosity, especially at low relative humidity.We also predict the Tg of OA components identified via positive matrixfactorization of aerosol mass spectrometer (AMS) data. The predicted viscosity ofoxidized OA is consistent with previously reported viscosity of secondary organic aerosols (SOA) derivedfrom α-pinene, toluene, isoprene epoxydiol (IEPOX), and diesel fuel.Comparison of the predicted viscosity based on the observed volatilitydistributions with the viscosity simulated by a chemical transport modelimplies that missing low volatility compounds in a global model can lead tounderestimation of OA viscosity at some sites. The relation betweenvolatility and viscosity can be applied in the molecular corridor orvolatility basis set approaches to improve OA simulations in chemicaltransport models by consideration of effects of particle viscosity in OAformation and evolution.more » « less
-
Volatile chemical products (VCPs) and other non-combustion-related sourceshave become important for urban air quality, and bottom-up calculationsreport emissions of a variety of functionalized compounds that remainunderstudied and uncertain in emissions estimates. Using a new instrumentalconfiguration, we present online measurements of oxygenated organiccompounds in a US megacity over a 10 d wintertime sampling period, whenbiogenic sources and photochemistry were less active. Measurements wereconducted at a rooftop observatory in upper Manhattan, New York City, USAusing a Vocus chemical ionization time-of-flight mass spectrometer, withammonium (NH4+) as the reagent ion operating at 1 Hz. The range ofobservations spanned volatile, intermediate-volatility, and semi-volatileorganic compounds, with targeted analyses of ∼150 ions, whoselikely assignments included a range of functionalized compound classes suchas glycols, glycol ethers, acetates, acids, alcohols, acrylates, esters,ethanolamines, and ketones that are found in various consumer, commercial,and industrial products. Their concentrations varied as a function of winddirection, with enhancements over the highly populated areas of the Bronx,Manhattan, and parts of New Jersey, and included abundant concentrations ofacetates, acrylates, ethylene glycol, and other commonly used oxygenatedcompounds. The results provide top-down constraints on wintertime emissionsof these oxygenated and functionalized compounds, with ratios to commonanthropogenic marker compounds and comparisons of their relative abundancesto two regionally resolved emissions inventories used in urban air qualitymodels.more » « less
-
Abstract. Biogenic organic precursors play an important role inatmospheric new particle formation (NPF). One of the major precursor speciesis α-pinene, which upon oxidation can form a suite of productscovering a wide range of volatilities. Highly oxygenated organic molecules(HOMs) comprise a fraction of the oxidation products formed. While it isknown that HOMs contribute to secondary organic aerosol (SOA) formation,including NPF, they have not been well studied in newly formed particles dueto their very low mass concentrations. Here we present gas- and particle-phase chemical composition data from experimental studies of α-pinene oxidation, including in the presence of isoprene, at temperatures(−50 and −30 ∘C) and relativehumidities (20 % and 60 %) relevant in the upper free troposphere. Themeasurements took place at the CERN Cosmics Leaving Outdoor Droplets (CLOUD)chamber. The particle chemical composition was analyzed by a thermaldesorption differential mobility analyzer (TD-DMA) coupled to a nitratechemical ionization–atmospheric pressure interface–time-of-flight(CI-APi-TOF) mass spectrometer. CI-APi-TOF was used for particle- and gas-phase measurements, applying the same ionization and detection scheme. Ourmeasurements revealed the presence of C8−10 monomers and C18−20dimers as the major compounds in the particles (diameter up to∼ 100 nm). Particularly, for the system with isoprene added,C5 (C5H10O5−7) and C15 compounds(C15H24O5−10) were detected. This observation is consistentwith the previously observed formation of such compounds in the gas phase. However, although the C5 and C15 compounds do not easily nucleate,our measurements indicate that they can still contribute to the particlegrowth at free tropospheric conditions. For the experiments reported here,most likely isoprene oxidation products enhance the growth of particleslarger than 15 nm. Additionally, we report on the nucleation rates measuredat 1.7 nm (J1.7 nm) and compared with previous studies, we found lowerJ1.7 nm values, very likely due to the higher α-pinene andozone mixing ratios used in the present study.more » « less