Homomorphic Encryption (HE) is one of the most promising security solutions to emerging Machine Learning as a Service (MLaaS). Several Leveled-HE (LHE)-enabled Convolutional Neural Networks (LHECNNs) are proposed to implement MLaaS to avoid the large bootstrapping overhead. However, prior LHECNNs have to pay significant computational overhead but achieve only low inference accuracy, due to their polynomial approximation activations and poolings. Stacking many polynomial approximation activation layers in a network greatly reduces the inference accuracy, since the polynomial approximation activation errors lead to a low distortion of the output distribution of the next batch normalization layer. So the polynomial approximation activations and poolings have become the obstacle to a fast and accurate LHECNN model. In this paper, we propose a Shift-accumulation-based LHE-enabled deep neural network (SHE) for fast and accurate inferences on encrypted data. We use the binary-operation-friendly leveled-TFHE (LTFHE) encryption scheme to implement ReLU activations and max poolings. We also adopt the logarithmic quantization to accelerate inferences by replacing expensive LTFHE multiplications with cheap LTFHE shifts. We propose a mixed bitwidth accumulator to expedite accumulations. Since the LTFHE ReLU activations, max poolings, shifts and accumulations have small multiplicative depth, SHE can implement much deeper network architectures with more convolutional andmore »
AutoPrivacy: Automated Layer-wise Parameter Selection for Secure Neural Network Inference
Hybrid Privacy-Preserving Neural Network (HPPNN) implementing linear layers by Homomorphic Encryption (HE) and nonlinear layers by Garbled Circuit (GC) is one of the most promising secure solutions to emerging Machine Learning as a Service (MLaaS). Unfortunately, a HPPNN suffers from long inference latency, e.g., ∼100 seconds per image, which makes MLaaS unsatisfactory. Because HE-based linear layers of a HPPNN cost 93% inference latency, it is critical to select a set of HE parameters to minimize computational overhead of linear layers. Prior HPPNNs over-pessimistically select huge HE parameters to maintain large noise budgets, since they use the same set of HE parameters for an entire network and ignore the error tolerance capability of a network. In this paper, for fast and accurate secure neural network inference, we propose an automated layer-wise parameter selector, AutoPrivacy, that leverages deep reinforcement learning to automatically determine a set of HE parameters for each linear layer in a HPPNN. The learning-based HE parameter selection policy outperforms conventional rule-based HE parameter selection policy. Compared to prior HPPNNs, AutoPrivacy-optimized HPPNNs reduce inference latency by 53%∼70% with negligible loss of accuracy.
- Publication Date:
- NSF-PAR ID:
- 10282768
- Journal Name:
- Advances in Neural Information Processing Systems
- Volume:
- 33
- Page Range or eLocation-ID:
- 8638-8647
- ISSN:
- 1049-5258
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Homomorphic Encryption (HE) based secure Neural Networks(NNs) inference is one of the most promising security solutions to emerging Machine Learning as a Service (MLaaS). In the HE-based MLaaS setting, a client encrypts the sensitive data, and uploads the encrypted data to the server that directly processes the encrypted data without decryption, and returns the encrypted result to the client. The clients' data privacy is preserved since only the client has the private key. Existing HE-enabled Neural Networks (HENNs), however, suffer from heavy computational overheads. The state-of-the-art HENNs adopt ciphertext packing techniques to reduce homomorphic multiplications by packing multiple messages into one single ciphertext. Nevertheless, rotations are required in these HENNs to implement the sum of the elements within the same ciphertext. We observed that HENNs have to pay significant computing overhead on rotations, and each of rotations is ∼10× more expensive than homomorphic multiplications between ciphertext and plaintext. So the massive rotations have become a primary obstacle of efficient HENNs. In this paper, we propose a fast, frequency-domain deep neural network called Falcon, for fast inferences on encrypted data. Falcon includes a fast Homomorphic Discrete Fourier Transform (HDFT) using block-circulant matrices to homomorphically support spectral operations. We also propose severalmore »
-
Precise monitoring of respiratory rate in premature newborn infants is essential to initiating medical interventions as required. Wired technologies can be invasive and obtrusive to the patients. We propose a deep-learning-enabled wearable monitoring system for premature newborn infants, where respiratory cessation is predicted using signals that are collected wirelessly from a non-invasive wearable Bellypatch put on the infant’s body. We propose a five-stage design pipeline involving data collection and labeling, feature scaling, deep learning model selection with hyperparameter tuning, model training and validation, and model testing and deployment. The model used is a 1-D convolutional neural network (1DCNN) architecture with one convolution layer, one pooling layer, and three fully-connected layers, achieving 97.15% classification accuracy. To address the energy limitations of wearable processing, several quantization techniques are explored, and their performance and energy consumption are analyzed for the respiratory classification task. Results demonstrate a reduction of energy footprints and model storage overhead with a considerable degradation of the classification accuracy, meaning that quantization and other model compression techniques are not the best solution for respiratory classification problem on wearable devices. To improve accuracy while reducing the energy consumption, we propose a novel spiking neural network (SNN)-based respiratory classification solution, which canmore »
-
Recently Homomorphic Encryption (HE) is used to implement Privacy-Preserving Neural Networks (PPNNs) that perform inferences directly on encrypted data without decryption. Prior PPNNs adopt mobile network architectures such as SqueezeNet for smaller computing overhead, but we find naïvely using mobile network architectures for a PPNN does not necessarily achieve shorter inference latency. Despite having less parameters, a mobile network architecture typically introduces more layers and increases the HE multiplicative depth of a PPNN, thereby prolonging its inference latency. In this paper, we propose a \textbf{HE}-friendly privacy-preserving \textbf{M}obile neural n\textbf{ET}work architecture, \textbf{HEMET}. Experimental results show that, compared to state-of-the-art (SOTA) PPNNs, HEMET reduces the inference latency by $59.3%\sim 61.2%$, and improves the inference accuracy by $0.4 % \sim 0.5%$.
-
The ever increasing size of deep neural network (DNN) models once implied that they were only limited to cloud data centers for runtime inference. Nonetheless, the recent plethora of DNN model compression techniques have successfully overcome this limit, turning into a reality that DNN-based inference can be run on numerous resource-constrained edge devices including mobile phones, drones, robots, medical devices, wearables, Internet of Things devices, among many others. Naturally, edge devices are highly heterogeneous in terms of hardware specification and usage scenarios. On the other hand, compressed DNN models are so diverse that they exhibit different tradeoffs in a multi-dimension space, and not a single model can achieve optimality in terms of all important metrics such as accuracy, latency and energy consumption. Consequently, how to automatically select a compressed DNN model for an edge device to run inference with optimal quality of experience (QoE) arises as a new challenge. The state-of-the-art approaches either choose a common model for all/most devices, which is optimal for a small fraction of edge devices at best, or apply device-specific DNN model compression, which is not scalable. In this paper, by leveraging the predictive power of machine learning and keeping end users in the loop,more »